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Abstract

In the paper we de¯ne and characterize the asynchronous systems from
the point of view of their autonomy, determinism, order, non-anticipation,
time invariance, symmetry, stability and other important properties. The
study is inspired by the models of the asynchronous circuits.
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1. Introduction

We mention three levels of abstraction of digital electrical engineering.
The ¯rst level is the descriptive, non-formalized one. The bricks with which

this theory is built are small: logical gates, °ip-°ops, or bigger: handshake
controls, pipelines, adders, oscillators. The analysis is made either timeless,
with truth tables, or timed (discrete/real) by using di®erent methods.

The second level was proposed by the author in some previous papers under
the name of delay theory. The fundamental notion is that of delay= the math-
ematical model of the delay circuit, consisting in systems of ordinary and/or
di®erential equations and/or inequalities written on R ! f0; 1g functions. For
example if the input u and the state x are such functions, the equation

x(t) = u(t ¡ d)
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where t 2 R; d ¸ 0 is called the ideal delay, while the delays
\

»2[t¡dr;t)

u(») · x(t) ·
[

»2 [t¡df ;t)

u(»)

and respectively

x(t ¡ 0) ¢ x(t) ¢
\

»2[t¡dr ;t)

u(») [ x(t ¡ 0) ¢ x(t) ¢
\

»2[t¡df ;t)

u(»)[

[x(t ¡ 0) ¢ x(t) ¢
\

»2[t¡dr;t)

u(») [ x(t ¡ 0) ¢ x(t) ¢
\

»2 [t¡df ;t)

u(») = 1

are inertial, i.e. non-ideal, where dr > 0; df > 0. We interpret the last di®er-
ential equation (the functions x(t ¡ 0) ¢ x(t); x(t ¡ 0) ¢ x(t) are called the left
semi-derivatives of x ) in the next manner: at each time instant t, one of the
next conditions is true

² x was 0 and now it is 1 and u was 1 for su±ciently long (dr tine units)

² x was 1 and now it is 0 and u was 0 for su±ciently long

² x was 0 and now it is 0 and u was not 1 for su±ciently long

² x was 1 and now it is 1 and u was not 0 for su±ciently long

With delays and Boolean functions, any asynchronous circuit may be mod-
eled at the most detailed logical level and this is sometimes an advantage, some-
times a disadvantage.

The third level of abstraction of digital electrical engineering is the one of
the system theory that is inspired by the delay theory. In fact when the details
that characterize delay theory are a (major) disadvantage, they are avoided by
using asynchronous systems. An asynchronous system f (in the input-output
sense) is a 'black-box', thought as a multivalued function associating to each
input u : R ! f0; 1gm respectively a set of states x : R ! f0; 1gn; x 2 f (u).
The one-to-many association (in other words: the non-deterministic association)
that f represents is motivated by the fact that the parameters that de¯ne an
asynchronous circuit are not known and constant:

² they are known within the limits given by the precission of the measure-
ment tools

² they depend on the temperature and on the power supply, thus they are
variable against time in some ranges of values

² they depend on the technology that is used, but they di®er even if we
compare similar circuits produced in the same technology
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In the paper we propose to analyze di®erent types of asynchronous systems.

2. Preliminaries
We introduce now some notions, notations and preliminary results.
R is the time set. For t; d 2 R, the function ¿d : R ! R; ¿d (t) = t ¡ d is

the time translation with d.
We note with B the set f0; 1g and let

P ¤(Bm) = fAjA ½ Bm; A 6= ;g

A signal is a function w : R ! B with the property that the real unbounded
sequence 0 · t0 < t1 < t2 < ::: exists so that

w(t) = w(t0 ¡ 0) ¢ Â(¡1;t0)(t) © w(t0) ¢ Â[t0;t1)(t) © w(t1) ¢ Â[t1;t2)(t) © :::

where Â(¢) is the characteristic function. The set of the signals is noted with S
and we note furthermore:

S(m) = fuju : R ! Bm; ui 2 S;i = 1; mg;m ¸ 1

S(0) = f0j0 : R ! Bg
(the one element set consisting in the null function), respectively

P ¤(S(m)) = fU jU ½ S(m); U 6= ?g

For ¸ 2 Bm; u 2 S(m) and ¾ : f1; :::; mg ! f1; :::; mg bijective, we note

¸ = (¸1; :::;¸m); u(t) = (u1(t); :::; um(t))

¸¾ = (¸¾(1); :::; ¸¾(m)); u¾(t) = (u¾(1)(t); :::; u¾(m)(t))

Lemma Let u 2 S(m); m ¸ 1. The next statements are true
a) If u is not constant we note t0 = minftju(t ¡ 0) 6= u(t)g. Then

8d 2 R; (u ± ¿d 2 S(m) () t0 + d ¸ 0)

b) For any d ¸ 0, we have u ± ¿d 2 S(m)

c) (8d 2 R; u ± ¿ d 2 S(m)) () u is constant.
Proof. We suppose that the family u0; u1; u2; ::: 2 Bm and the unbounded

sequence 0 · t0 < t1 < t2 < ::: are chosen so that

u(t) = u0 ¢ Â(¡1;t0)(t) © u1 ¢ Â[t0;t1 )(t) © u2 ¢ Â[t1;t2)(t) © :::

and if u is not constant, then t0 = minftju(t ¡ 0) 6= u(t)g. For any d 2 R we
can write

u ± ¿ d(t) = u(t ¡ d) =

= u0 ¢ Â(¡1;t0 )(t ¡ d) © u1 ¢ Â[t0 ;t1)(t ¡ d) © u2 ¢ Â[t1;t2)(t ¡ d) © :::

= u0 ¢ Â(¡1;t0+d)(t) © u1 ¢ Â[t0+d;t1+d)(t) © u2 ¢ Â[t1+d;t2+d)(t) © :::
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The sequence with the general term t0k = tk + d; k 2 N is unbounded, like (tk ).
a) Obvious.
b) If u is constant, then 8d 2 R; u = u ± ¿d 2 S(m) and if u is not constant,

then the property results from the fact that 0 · d; 0 · t0 · t0 + d and from a)
(=.

c) =) We suppose against all reason that u is not constant. Some d 2 R
exists then so that t0 + d < 0 thus, from a) we get u ± ¿d =2 S(m), contradiction.

3. Asynchronous systems
De¯nition 1 The functions f : S(m) ! P ¤(S(n)) are called asynchronous sys-
tems (in the input-output sense), shortly systems. The elements u 2 S(m),
respectively x 2 f (u) are called inputs, respectively states (or outputs).

Remark 2 The asynchronous systems f are relations of determination between
the cause u and the e®ect x 2 f (u) and our only request is that each cause
has e®ects: 8u; f (u) 6= ?. When this determination consists in a system of
equations and/or inequalities, f gives for any u the set f (u) of the solutions of
the system (writting systems of equations and/or inequalities is not the purpose
of the present paper, however).

The one-to-many association u 7¡! f (u) has its origin as we have already
mentioned in the fact that to one cause u there correspond in general several
possible e®ects x 2 f (u) depending on the variations in ambient temperature,
power supply, on the technology etc.

Example 3 In the next examples we have m = n at (1) and n = 1 at (2),...,(4):

f (u) = fu ± ¿dg; d ¸ 0 (1)

f (u) = fxj9d ¸ 0;8t ¸ d; x(t) = ui(t)g; i 2 f1; :::; mg (2)

f (u) = fxjx(t ¡ 0) ¢ x(t) · u1(t ¡ d) ¢ ::: ¢ um(t ¡ d)g (3)

f (u) = fxjx(t ¡ 0) ¢ x(t) ·
\

»2[t;t+±r ]

x(»); x(t ¡ 0) ¢ x(t) ·
\

»2[t;t+±f ]

x(»)g (4)

For (1), the fact that u 2 S(m) and d ¸ 0 implies u ± ¿d 2 S(m) has been proved
in the Lemma, item b). And at (4) where ±r ¸ 0; ±f ¸ 0 a system is de¯ned
that associates to each input u the set of all the (inertial) states x having the
property that if they switch from 0 to 1 they remain 1 more than ±r time units
and if they switch from 1 to 0 they remain 0 more than ±f time units.

De¯nition 4 Let the set X 2 P ¤(S(n)) and the systems f ;g : S(m) ! P ¤(S(n)).
They de¯ne the next systems:

² f : S(m) ! P ¤(S(n));

8(u1; :::; um) 2 S(m); f (u1; :::; um ) = fxjx 2 f (u1; :::; um)g
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² f(m+1) : S(m+1) ! P ¤(S(n));

8(u1; :::; um+1) 2 S(m+1); f (m+1)(u1; :::; um+1) = f (u1; :::; um)

² fi!j : S(m) ! P ¤ (S(n)) is de¯ned for all i; j 2 f1; :::;mg; i 6= j by

8(u1; :::; um) 2 S(m); fi!j(u1; :::; ui
i
; :::; uj

j
; :::; um ) = f (u1; :::; ui

i
; :::; ui

j
; :::; um )

² we suppose that f does not depend on ui; i 2 f1; :::; mg i.e. for all u 2
S(m); f (u1; :::; ui; :::; um) = f (u1; :::; 0

i
; :::; um). Then fbui : S(m¡1) !

P ¤(S(n)) is de¯ned in the next manner:

8(u1; :::; bui ; :::; um) 2 S(m¡1); fbui(u1; :::; bui; :::; um ) = f (u1; :::; 0
i
; :::;um)

where bui indicates a missing coordinate

² if 8(u1; :::;um) 2 S(m); f (u1; :::; um)\X 6= ;, respectively if 8(u1; :::; um) 2
S(m); f (u1; :::; um) \ g(u1; :::; um) 6= ;, then the systems f \ X;f \ g :
S(m) ! P ¤(S(n)) are de¯ned by

8(u1; :::; um) 2 S(m); (f \ X)(u1; :::; um) = f (u1; :::; um) \ X

8(u1; :::; um) 2 S(m); (f \ g)(u1; :::; um) = f(u1; :::; um) \ g(u1; :::; um)

² f [ X;f [ g : S(m) ! P ¤(S(n)),

8(u1; :::; um) 2 S(m); (f [ X)(u1; :::; um) = f (u1; :::; um) [ X

8(u1; :::; um) 2 S(m); (f [ g)(u1; :::; um) = f(u1; :::; um) [ g(u1; :::; um)

4. Initial states

De¯nition 5 Let the system f . The function Á : S(m) ! P ¤(Bn ),

8u; Á(u) = fx(0 ¡ 0)jx 2 f (u)g

is called the initial state function of f and the set

£f =
[

u2S(m)

Á(u)

is called the set of the initial states of f .

De¯nition 6 If £f = fx0g i.e. if

8u; 8x 2 f (u); x(0 ¡ 0) = x0

then we say that f is initialized and that x0 is the initial state of f; otherwise,
we say that f is not initialized and that it does not have an initial state.
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Example 7 The constant function S(m) ! P ¤(S(n)) equal with (x0g is an
initialized system whose initial state is x0.

Remark 8 Many authors prefer to work either with initialized systems, or at
least with constant initial state functions. Our option is for a more general
frame because we want to include in this study the trivial systems f (u) = fug
and other similar systems.

Theorem 9 Let the systems f ; g and the set of states X . The initial state
functions of the systems f ; f (m+1); fi!j ; fbui ; f \ X; f \ g; f [ X; f [ g are the
next ones:

² Á : S(m) ! P ¤(Bn);

8(u1; :::; um) 2 S(m); Á(u1; :::; um ) = fx0jx0 2 Á(u1; :::; um)g

² Á(m+1) : S(m+1) ! P ¤(Bn );

8(u1; :::; um+1) 2 S(m+1); Á(m+1)(u1; :::; um+1) = Á(u1; :::; um)

² Ái!j : S(m) ! P ¤(Bn) is given for all i; j 2 f1; :::; mg; i 6= j by

8(u1; :::; um) 2 S(m); Ái!j (u1; :::; ui
i
; :::; uj

j
; :::; um) = Á(u1; :::; ui

i
; :::; ui

j
; :::; um)

² if f does not depend on ui; i 2 f1; :::;mg, then Ábui : S(m¡1) ! P ¤(Bn) is
given by:

8(u1; :::; bui; :::; um) 2 S(m¡1); Ábui(u1; :::; bui ; :::; um) = Á(u1; :::; 0
i
; :::; um)

² if 8(u1; :::;um) 2 S(m); f (u1; :::; um)\X 6= ;, respectively if 8(u1; :::; um) 2
S(m); f (u1; :::; um) \ g(u1; :::; um) 6= ;, then Á \ ¥; Á \ ° : S(m) ! P ¤(Bn)
are:

8(u1; :::;um) 2 S(m); (Á \ ¥)(u1; :::; um) = Á(u1; :::; um) \ ¥

8(u1; :::;um) 2 S(m); (Á \ °)(u1; :::; um) = Á(u1; :::; um) \ °(u1; :::; um)

where 8(u1; :::; um) 2 S(m); ¥(u1; :::; um ) = fx(0 ¡ 0)jx 2 Xg not= ¥

² Á [ ¥; Á [ ° : S(m) ! P ¤(Bn),

8(u1; :::;um) 2 S(m); (Á [ ¥)(u1; :::; um) = Á(u1; :::; um) [ ¥

8(u1; :::;um) 2 S(m); (Á [ °)(u1; :::; um) = Á(u1; :::; um) [ °(u1; :::; um)
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Proof. These result from the way that the initial state function was intro-
duced at De¯nition 5. For example

Á(u) = fx(0¡0)jx 2 f (u)g = fx(0¡0)jx 2 f(u)g = fx(0 ¡ 0)jx 2 f (u)g = fx0jx0 2 Á(u)g

5. Parallel connection and serial connection
Remark 10 We shall identify the sets S(m1 ) £ ::: £S(mp) and S(m1+: ::+mp) for
m1 ¸ 1; :::; mp ¸ 1 whose elements are of the form (u1; :::; up) = (u1

1; :::; u1
m1

; :::; up
1 ; :::; up

mp
):

By this identi¯cation we ignore the fact that the argument of (u1; :::; up) is
(t1; :::; tp) 2 Rp and the argument of (u1

1; :::; u1
m1

; :::; up
1; :::; u

p
mp

) is t 2 R and we
just keep in mind the form of the coordinates of these functions. The conven-
tion imposes furthermore the identi¯cation of P ¤(S(n1 )) £ ::: £ P ¤(S(np)) with
P ¤(S(n1+:::+np)). See the Appendix for more details.

These identi¯cations are more meaningful than they might seem at the ¯rst
sight because they allow in the next de¯nition that p systems with p di®erent
time axes, when connected in parallel, have one time axis.

De¯nition 11 The paral lel connection (or the direct product) of the systems
f i : S(mi) ! P ¤(S(ni)); i = 1; p is the system (f1; :::; f p) : S(m1+:: :+mp) !
P ¤(S(n1+:::+np)) de¯ned by

8(u1; :::; up) 2 S(m1+ :::+mp); (f 1; :::; f p)(u1; :::; up) = (f 1(u1); :::; f p(up))

De¯nition 12 We suppose that n1 + ::: + np = m. The serial connection of
the systems f ; f1; :::; f p is the system f ± (f 1; :::; f p) : S(m1+:::+mp) ! P ¤(S(n))
that is de¯ned by any of the equivalent statements:

f ± (f 1; :::; f p)(u1; :::; up) = fxj9y1 2 f 1(u1); :::; 9yp 2 fp (up); x 2 f (y1; :::; yp)g

f ± (f 1; :::; f p)(u1; :::; up ) =
[

(y1 ;:::;yp)2f1(u1)£: ::£fp(up)

f (y1; :::; yp)

Example 13 The system I : S ! P ¤(S) is de¯ned in the next way

I(ui) = fuig (5)

Then for any f and any u = (u1; :::; um) we remark that

(I; :::; I| {z }
n

) ± f (u) = f ± (I; :::; I| {z }
m

)(u) = f (u)

More general, with the notation Id : S ! P ¤(S); d ¸ 0

Id(ui) = fui ± ¿dg (6)
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we have
f ± (Id ; :::; Id| {z }

m

)(u) = f (u ± ¿ d) (7)

(Id; :::; Id| {z }
n

) ± f (u) = fx ± ¿djx 2 f (u)g (8)

Let us consider for example that f represents the set of the solutions of the
system

x(t ¡ 0) ¢ x(t) ·
\

»2[t¡2;1)

(u1(») ¢ u2(»)) (9)

x(t ¡ 0) ¢ x(t) = 0 (10)

that for (u1; u2) = (Â[0;1); Â[1;1)) is given by

f (u) = f1g [ fÂ[d0;1)jd0 ¸ 3g

For d = 1 in equation (7) we have

f (u ± ¿ 1) = f1g [ fÂ[d0;1)jd0 ¸ 4g

Theorem 14 The initial state function of the system f ±(f 1; :::; f p) is the func-
tion Á ± (f 1; :::; f p) : S(m1+: ::+mp) ! P ¤(Bn) de¯ned by

Á±(f 1; :::; f p)(u1; :::; up) = fx0j9y1 2 f 1(u1); :::;9yp 2 f p(up); x0 2 Á(y1; :::; yp)g

Proof. fx(0¡0)jx 2 f±(f 1; :::; f p)(u1; :::; up)g = fx(0¡0)j9y1 2 f 1(u1); :::;9yp 2
f p(up);x 2 f (y1; :::; yp)g

= fx0j9y1 2 f 1(u1); :::;9yp 2 f p(up); x0 2 Á(y1; :::; yp)g

6. Autonomy
De¯nition 15 The system f is autonomous (or free) if it is the constant func-
tion

9X; 8u;f (u) = X

and it is non-autonomous otherwise. The usual notation for the autonomous
system f is X .

Remark 16 The autonomous systems are or may be considered to be without
input since the states x 2 X are the same for all u. De¯nition 15 is somehow
di®erent from other authors' point of view [1] that consider the autonomous
systems be those systems where the input takes exactly one value and it belongs
-in our formalization- to the one element set S(0). See however Theorem 18.

Example 17 The (absolute inertial) system f that was de¯ned at Example 3
(4) is autonomous.
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Theorem 18 If f is autonomous, then f ; f (m+1); fi!j ; fbui are autonomous,
i; j 2 f1; :::; mg; i 6= j and a system g : S(0) ! P ¤(S(n)) exists so that 8u 2
S(m); 8u0 2 S(0); f (u) = g(u0).

Proof. If f = X , then 8u; f (u) = fxjx 2 Xg etc. We take g = fbu1:::bum:

Theorem 19 If 8u; X ½ f (u) then f \ X is autonomous and if 8u; f (u) ½ X ,
then f [ X is autonomous.

Proof. For all u; x we have

x 2 X () (x 2 X and x 2 X ) =) (x 2 f (u) and x 2 X) =) x 2 X

in other words 8u; X ½ f (u) \ X ½ X and eventually f \ X = X .

Theorem 20 If f; g are autonomous, then f \ g and f [ g are autonoous.

Proof. If 9X; 8u; f (u) = X and 9Y; 8u; g(u) = Y , then 8u; (f \ g)(u) =
X \ Y and 8u; (f [ g)(u) = X [ Y .

Theorem 21 The initial state function ¥ of the autonomous system X is con-
stant and the initial state functions ¥; ¥(m+1); ¥i!j; ¥bui are also constant,
i; j 2 f1; :::;mg; i 6= j:

Proof. The set 8u;¥(u) = fx(0 ¡ 0)jx 2 Xg does not depend on u.

Theorem 22 Let f : S(m) ! P ¤(S(n)) and f i : S(mi) ! P ¤(S(ni)); i = 1; p,
n1 + ::: + np = m like before. If f is autonomous, then f ± (f 1; :::; f p) is au-
tonomous. If f 1; :::; f p are all autonomous, then f ± (f 1; :::; f p) is autonomous.

Proof. If f = X , then f ± (f 1; :::; f p) = X and if f 1 = X1; :::; f p = Xp, the
formula

8(u1; :::; up) 2 S(m1+:: :+mp); f±(f 1; :::; f p)(u1; :::; up) =
[

(y1;:::;yp)2X1£:: :£Xp

f (y1; :::; yp)

proves the desired property.

7. Finitude. Determinism
De¯nition 23 The system f is ¯nite (deterministic) if it has the property that
8u; f (u) has a ¯nite number of elements (a single element); otherwise, it is
called in¯nite (non-deterministic).

Remark 24 In the situation when f represents the set of the solutions of a
system of equations/inequalities, its determinism coincides with the uniqueness
of the solution.

The deterministic systems may be identi¯ed with the S(m) ! S(n) functions.
Finiteness is useful when, in modeling, we take in consideration the 'worst

case', the 'best case', the 'most frequent' case etc.
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Example 25 We have had already several examples of deterministic systems;
we just remark that the Boolean functions F : Bm ! Bn de¯ne deterministic
systems by

8u; f (u) = fF (u)g
The direct product (F 1; :::; F p) of F i : Bmi ! Bni ; i = 1; p de¯nes the deter-
ministic system (f 1; :::; f p), where

8ui 2 S(mi); f i(ui) = fF i(ui)g; i = 1;p

by

8(u1; :::;up) 2 S(m1+: ::+mp); (f 1; :::; f p)(u1; :::; up) = f(F 1(u1); :::; F p (up ))g

Theorem 26 If f is ¯nite (deterministic), then f ; f (m+1), fi!j and fbui are
¯nite (deterministic), where i; j 2 f1; :::;mg; i 6= j.

Proof. We note with j j the number of elements of a ¯nite set and we have
8u; jf (u)j = jf (u)j etc.

Theorem 27 If one of the systems f ; g is ¯nite (deterministic), then f \ g is
¯nite (deterministic) and if both are ¯nite, then f [ g is ¯nite.

Proof. We suppose that f is ¯nite (deterministic) and we infer

8u; jf (u) \ g(u)j · jf (u)j

thus f \ g is ¯nite (deterministic). If f ; g are both ¯nite then we have

8u; jf (u) [ g(u)j · jf (u)j + jg(u)j

thus f [ g is ¯nite.

Theorem 28 When f is deterministic, the initial state function Á ful¯lls the
property: 8u; Á(u) has a single element and the initial state functions Á; Á(m+1);
Ái!j; Ábui , i; j 2 f1; :::; mg; i 6= j are in the same situation.

Proof. The ¯rst assertion is obvious and the other statements take into
account Theorem 26.

Theorem 29 If f; f 1; :::; f p are all ¯nite (deterministic), then f ± (f 1; :::; f p)
is ¯nite (deterministic).

Proof. For some arbitrary (u1; :::; up ) we can write

f ± (f 1; :::; f p)(u1; :::; up ) =
[

(y1 ;:::;yp)2f1(u1)£: ::£fp(up)

f (y1; :::; yp)

where f 1(u1) £ ::: £ f p(up) is ¯nite (has one element).
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Theorem 30 f is autonomous and ¯nite (deterministic) if and only if 9X ½
S(n) ¯nite (consisting in a single element) so that 8u; f(u) = X .

Proof. Obvious.

8. Order
De¯nition 31 The next inclusion f ½ g is de¯ned between the systems f; g:

8u; f (u) ½ g(u)

Remark 32 ½ is a partial order without ¯rst element, but with the last element
represented by the autonomous system S(n) : S(m) ! P ¤(S(n)),

8u 2 S(m);S(n)(u) = S(n)

The sense of the inclusion f ½ g is that the model o®ered by f is more
precise, it has more information on the modeled circuit than the model o®ered
by g, in particular the deterministic systems give the maximal information and
the autonomous system S(n) gives the minimal information.

Example 33 We consider the next S(m) ! P ¤(S) systems

f1(u) = fuig

f2(u) = fxj8t ¸ 0; x(t) = ui(t)g
f3(u) = fxj9t0; 8t ¸ t0;x(t) = ui(t)g

where i 2 f1; :::; mg. We have f1 ½ f2 ½ f3.

Theorem 34 If f ½ g, then f ½ g; f (m+1) ½ g(m+1); fi!j ½ gi!j ; fbui ½ gbui

are true, i;j 2 f1; :::; mg; i 6= j.

Proof. For example
8(u1; :::; um); fi!j(u1; :::; ui

i
; :::; uj

j
; :::; um) = f (u1; :::; ui

i
; :::; ui

j
; :::; um) ½

½ g(u1; :::; ui
i
; :::; ui

j
; :::; um) = gi!j(u1; :::; ui

i
; :::; uj

j
; :::; um)

Theorem 35 For X ½ S(n) and the systems f; g, the next inclusions take place:

f \ X ½ f ½ f [ X

f \ g ½ f ½ f [ g

Proof. 8u; 8x; x 2 (f \ g)(u) () x 2 f (u) \ g(u) () (x 2 f (u) and
x 2 g(u)) =) x 2 f (u) =) (x 2 f (u) or x 2 g(u)) () x 2 f(u) [ g(u) ()
x 2 (f [ g)(u)

Theorem 36 If f ½ g, then 8u; Á(u) ½ °(u).
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Proof. For any u we have Á(u) = fx(0 ¡ 0)jx 2 f (u)g ½ fx(0 ¡ 0)jx 2
g(u)g = °(u)

Theorem 37 Let the systems f; g : S(m) ! P ¤(S(n)); f i; gi : S(mi) ! P ¤(S(ni));
i = 1; p so that n1 + ::: + np = m. The next implications are true:

f ½ g =) f ± (f 1; :::; f p) ½ g ± (f 1; :::; f p)

f 1 ½ g1; :::; f p ½ gp =) f ± (f 1; :::; f p) ½ f ± (g1; :::; gp)

Proof. Let (u1; :::; up) and x 2 f ± (f 1; :::; f p)(u1; :::; up), meaning that y1 2
f 1(u1); :::; yp 2 f p(up) exist so that x 2 f (y1; :::; yp); because x 2 g(y1; :::; yp),
we obtain x 2 g ± (f 1; :::; f p)(u1; :::; up).

On the other hand if we suppose that x 2 f ± (f 1; :::; f p)(u1; :::;up), then
y1 2 f 1(u1); :::; yp 2 f p(up) exist so that x 2 f (y1; :::;yp ). We get y1 2
g1(u1); :::; yp 2 gp(up) and this implies x 2 f ± (g1; :::; gp )(u1; :::; up).

Theorem 38 Let the arbitrary sets X ½ S(n),Xi ½ S(ni ); i = 1; p and the
systems f; g : S(m) ! P ¤(S(n)); f i; gi : S(mi) ! P ¤(S(ni)); i = 1; p so that
n1 + ::: + np = m.

a) If 8u; f (u) \ X 6= ;, then 8(u1; :::; up);(f ± (f1; :::; f p))(u1; :::; up) \ X 6= ;
and

(f \ X) ± (f 1; :::; f p) = (f ± (f 1; :::; fp )) \ X

If 8(u1; :::; up ); f 1(u1)\X1 6= ;; :::; f p(up)\ Xp 6= ;, then 8(u1; :::; up); (f ±
(f 1; :::; fp ))(u1; :::; up) \ (f ± (X1; :::; Xp)) 6= ; and we can write

f ± (f 1 \ X1; :::; f p \ Xp) ½ (f ± (f 1; :::; f p)) \ (f ± (X1; :::; Xp))

b) If 8u; f (u) \ g(u) 6= ;, then 8(u1; :::; up); (f ± (f 1; :::; fp ))(u1; :::; up) \ (g ±
(f 1; :::; fp ))(u1; :::; up) 6= ; and

(f \ g) ± (f 1; :::; f p) ½ (f ± (f 1; :::; fp )) \ (g ± (f 1; :::; f p))

If 8(u1; :::; up); f 1(u1)\g1(u1) 6= ;; :::;f p (up)\gp(up) 6= ;, then 8(u1; :::; up ); (f±
(f 1; :::; fp ))(u1; :::; up) \ (f ± (g1; :::; gp ))(u1; :::; up) 6= ; and

f ± (f 1 \ g1; :::; fp \ gp) ½ (f ± (f 1; :::; f p)) \ (f ± (g1; :::; gp))

c) We have
(f [ X) ± (f 1; :::; f p) = (f ± (f 1; :::; fp )) [ X

f ± (f 1 [ X1; :::; f p [ Xp) ¾ (f ± (f 1; :::; f p)) [ (f ± (X1; :::; Xp))

d) The next properties are also true:

(f [ g) ± (f 1; :::; f p) = (f ± (f 1; :::; fp )) [ (g ± (f 1; :::; f p))

f ± (f 1 [ g1; :::; fp [ gp) ¾ (f ± (f 1; :::; f p)) [ (f ± (g1; :::; gp))

12



Proof. We prove b) and respectively d):
8(u1; :::; up); ((f\g)±(f 1; :::; f p))(u1; :::; up ) = fxj9y1; :::; 9yp; y1 2 f 1(u1) and ::: and yp 2

f p(up) and x 2 f (y1; :::; yp) and x 2 g(y1; :::; yp)g ½ fxj9y1; :::; 9yp ;y1 2
f 1(u1) and ::: and yp 2 f p(up) and x 2 f (y1; :::; yp) and 9z1; :::; 9zp; z1 2
f 1(u1) and:::and zp 2 f p(up) and x 2 g(z1; :::; zp)g = ((f ± (f 1; :::; f p)) \
(g ± (f 1; :::; f p)))(u1; :::; up)

8(u1; :::; up); (f±(f 1\g1; :::; f p\gp))(u1; :::; up) = fxj9y1; :::; 9yp; y1 2 f1(u1) and y1 2
g1(u1) and:::and yp 2 f p(up) and yp 2 gp(up) and x 2 f (y1; :::; yp)g ½
fxj9y1; :::;9yp; y1 2 f 1(u1) and:::and yp 2 f p(up) and 9z1; :::; 9zp; z1 2
g1(u1) and:::and zp 2 gp (up) and x 2 f (y1; :::; yp) and x 2 f (z1; :::; zp)g =
((f ± (f 1; :::; f p)) \ (f ± (g1; :::; gp)))(u1; :::; up )

respectively
8(u1; :::; up); ((f[g)±(f 1; :::; f p))(u1; :::; up ) = fxj9y1; :::; 9yp; y1 2 f 1(u1) and ::: and yp 2

f p(up) and (x 2 f (y1; :::; yp) or x 2 g(y1; :::; yp))g = fxj9y1; :::; 9yp; y1 2
f 1(u1) and ::: and yp 2 f p(up) and x 2 f (y1; :::; yp) or y1 2 f 1(u1) and:::and yp 2
f p(up) and x 2 g(y1; :::; yp)g = ((f ±(f1; :::; f p))[(g±(f 1; :::; fp )))(u1; :::; up)

8(u1; :::; up); (f ± (f 1 [ g1; :::; f p [ gp))(u1; :::; up) = fxj9y1; :::; 9yp; (y1 2
f 1(u1) or y1 2 g1(u1)) and:::and (yp 2 fp (up) or yp 2 gp(up)) and x 2
f (y1; :::; yp)g ¾ fxj9y1; :::; 9yp ;y1 2 f 1(u1) and:::and yp 2 f p(up) and x 2
f (y1; :::; yp) or y1 2 g1(u1) and:::and yp 2 gp (up) and x 2 f (y1; :::; yp)g =
((f ± (f 1; :::; f p)) [ (f ± (g1; :::; gp)))(u1; :::; up )

Remark 39 At Theorem 38, the statements from a) and b), respectively the
statements from c) and d) are pairwise similar. To be remarked the asymmetry
between the ¯rst statements of a) and b).

On the other hand, for the validity of the next theorem we need that the
axiom of choice holds.

Theorem 40 The next properties of determinism take place:

a) Any system g includes a deterministic system f .

b) If in the inclusion f ½ g the system g is deterministic, then f = g.

Proof. a) For any u, the axiom of choice allows choosing from the set g(u)
a point x and de¯ning a selective function f (u) = fxg. f is a deterministic
system and 8u; f (u) ½ g(u):

b) The formula
8u; f (u) = g(u)

represents the only possibility of choosing f at item a).

9. Non-anticipation, the ¯rst de¯nition
De¯nition 41 f is a non-anticipatory (or causative) system if it satis¯es for
any u 2 S(m) any x 2 S(n) and any d 2 R one of the next equivalent conditions

a) x 2 f (u) =) (u ± ¿ d 2 S(m) =) x ± ¿ d 2 S(n))
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b) (x 2 f(u) and u ± ¿d 2 S(m)) =) x ± ¿d 2 S(n)

Otherwise, we say that f is anticipatory, or anti-causative.

Theorem 42 The system f is non-anticipatory if and only if 8u; 8x 2 f (u)
one of the next statements is true:

a) x is constant
b) x; u are both variable and we have

minftju(t ¡ 0) 6= u(t)g · minftjx(t ¡ 0) 6= x(t)g

thus the ¯rst input switch is prior to the ¯rst output switch.

Proof. If. When x is constant, 8d 2 R; x = x±¿d 2 S(n) and the conclusion
of 41 b) is true. And if x; u are not constant, we note

t0 = minftju(t ¡ 0) 6= u(t)g
t1 = minftjx(t ¡ 0) 6= x(t)g

In 41 a), x 2 f (u) is true, thus (u ± ¿ d 2 S(m) =) x ± ¿d 2 S(n)) should be true
when u; x; d run in S(m); f (u) and R. The next true statements are equivalent:

(u ±¿ d 2 S(m) =) x ±¿d 2 S(n)) Lemma; item a)() t0+ d ¸ 0 =) t1 +d ¸ 0 ()
t0 · t1

Only if. Two possibilities exist of negating the statements
Case I x is variable and u is constant
The hypothesis of 41 b) (x 2 f(u) and u ± ¿d 2 S(m)) is true for any d 2 R

thus the conclusion is true: 8d 2 R; x ± ¿d 2 S(n). x is constant from the
Lemma, item c), contradiction

Case II x is variable, u is variable and t0 > t1
Any d 2 [¡t0; ¡t1) gives t0 +d ¸ 0 and t1+d < 0, i.e. from the Lemma item

a) we get u±¿ d 2 S(m) and x±¿d =2 S(n) contradiction with the non-anticipation
of f .

Corollary 43 We suppose that f is non-anticipatory and we consider the func-
tions u; x 2 f (u).

a) If u is constant, then x is constant.
b) If u is not constant, then two possibilities exist: either x is constant, or

x is not constant and the next condition

minftju(t ¡ 0) 6= u(t)g · minftjx(t ¡ 0) 6= x(t)g

is ful¯lled,

Proof. a) Special case of Theorem 42, item a), only if.
b) Special case of Theorem 42, item a), only if or coincidence with Theorem

42 item b), only if.
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Example 44 We have met non-anticipatory systems at Example 3 (1) and the
system f1 from Example 33 has the same property. Another case is that of the
system f with 8u; 8x 2 f (u); x is the constant function. The system de¯ned by
the next equation is also non-anticipatory:

x(t) =
\

»2(¡1;t)

ui(»)

where i 2 f1; :::; mg , since for all u, either x is constant, or it is variable with
exactly one switch from 1 to 0 and in this case we can write

minftjx(t ¡ 0) 6= x(t)g = minftjui(t ¡ 0) 6= ui(t)g ¸ minftju(t ¡ 0) 6= u(t)g

see Theorem 42, if.

Theorem 45 Let f non-anticipatory and i; j 2 f1; :::; mg; i 6= j. Then f ;
f (m+1); fi!j ; fbui are non-anticipatory.

Proof. Let u;x 2 f (u) and d 2 R arbitrary so that u ± ¿ d 2 S(m). From
the de¯nition of f we have that x 2 f (u) and because f is non-anticipatory
x ± ¿ d 2 S(n) holds and this is equivalent with any of

minftjx(t ¡ d ¡ 0) 6= x(t ¡ d)g ¸ 0

minftjx(t ¡ d ¡ 0) 6= x(t ¡ d)g ¸ 0

x ± ¿ d 2 S(n)

f is non-anticipatory.
The fact that

(x 2 fbui(u) and u±¿d 2 S(m)) =) (x 2 f (u) and u±¿ d 2 S(m)) =) x±¿ d 2 S(n)

proves that fbui is non-anticipatory.

Theorem 46 The next statements are equivalent for the system f :

a) f is autonomous and non-anticipatory

b) 9X; 8u; f (u) = X and 8x 2 X; x is the constant function

Proof. a) =) b) If 9X; 8u; f (u) = X we suppose against all reason that
9x 2 X which is not constant and let t1 ¸ 0 with x(t1¡0) 6= x(t1). The existence
of an u so that for some t0 > t1 we should have 8t < t0; u(t) = u(0 ¡ 0) and
u(t0 ¡ 0) 6= u(t0) together with the hypothesis of non-anticipation of f give a
contradiction, see Theorem 42 b), only if.

b) =) a) The property is true because if x 2 X is constant, then 8d 2
R; x ± ¿d 2 S(n).

Theorem 47 Let the systems f; g and X ½ S(n). If f is non-anticipatory, then
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a) f \ X and f \ g are non-anticipatory

b) f [ X is non-anticipatory if and only if X understood as autonomous
system is non-anticipatory and f [ g is non-anticipatory if and only if g
is non-anticipatory.

Proof. The implication 8u; 8x; 8d 2 R

x 2 f (u) \ g(u) =) x 2 f (u) =) (u ± ¿d 2 S(m) =) x ± ¿d 2 S(n))

shows the validity of a). At b), the supposition that f; f [g are non-anticipatory
and g is anticipatory gives

9u; 9x 2 g(u) ¡ f (u); 9d 2 R; u ± ¿d 2 S(m) and x ± ¿d =2 S(n)

contradiction.

Theorem 48 If f; f 1; :::; f p de¯ned like previously are non-anticipatory, then
f ± (f 1; :::; f p) is non-anticipatory.

Proof. We suppose that x 2 f ± (f 1; :::; f p)(u1; :::; up ) and (u1 ± ¿d; :::; up ±
¿ d) 2 S(m1+:::+mp) resulting the existence of y1 2 f 1(u1); :::; yp 2 f p(up) so
that x 2 f (y1; :::; yp). Because f 1; :::; fp are non-anticipatory, we get y1 ± ¿d 2
S(n1); :::; yp ± ¿d 2 S(np) and from the fact that f is non-anticipatory, we have
x ± ¿ d 2 S(n) so that f ± (f 1; :::; f p) has resulted to be non-anticipatory.

Theorem 49 If f is a non-anticipatory system, then any system g ½ f is non-
anticipatory.

Proof. (x 2 g(u) and u ± ¿ d 2 S(m)) =) (x 2 f (u) and u ± ¿ d 2
S(m)) =) x ± ¿d 2 S(n)

10. Non-anticipation, the second de¯nition
De¯nition 50 The system f is non-anticipatory, or causative if

8t1; 8u; 8v;(uj(¡1;t1) = vj(¡1;t1)) =) (8x 2 f (u); 9y 2 f (v);xj(¡1;t1) = yj(¡1;t1))

and anticipatory, or anti-causative otherwise.

Remark 51 This is another perspective on non-anticipation than the previous
one and the two notions are independent logical ly. The de¯nition states that for
any t1 any u and any x 2 f (u), the restriction xj(¡1;t1) depends only on the
restriction uj(¡1;t1) and is independent on the values of u(t); t ¸ t1.

A variant of De¯nition 50 exists, resulted by the replacement of the interval
(¡1; t1) with (¡1; t1].
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Example 52 Let's consider the next systems

f (u) = fÂ[0;1) © u1 ¢ Â[2;1)g

g(u) =
½f1g; if u1 = Â[0;1)

fu1g; otherwise

f (u) is non-anticipatory in the sense of De¯nition 50, but it is anticipatory in the
sense of De¯nition 41 because for u1(t) = Â[2;1)(t) the contradiction u1 ±¿¡2 =
Â[0;1) 2 S;x ± ¿¡2 = Â[¡2;¡1) © Â[0;1) =2 S is obtained. g(u) is anticipatory
in the sense of De¯nition 50, because for t1 = 1; u1 = Â[0;1); v1 = Â[0;2) the
contradiction 1j(¡1;1) 6= Â[0;2)j(¡1;1) is obtained; it is non-anticipatory in the
sense of De¯nition 41 however.

Theorem 53 Let f a non-anticipatory system (De¯nition 50). Then f ; f (m+1);
fi!j ; fbui are non-anticipatory, with i; j 2 f1; :::; mg; i 6= j.

Proof. Let t1; u;v and x 2 f (u) arbitrary so that uj(¡1;t1 ) = vj(¡1;t1);
the hypothesis that f is non-anticipatory gives the existence of y 2 f(v) so
that xj(¡1;t1) = yj(¡1;t1 ) i.e. xj(¡1;t1) = yj(¡1;t1). These show that f is
non-anticipatory.

We consider t1; u1; :::; um+1; v1; :::; vm+1 and x 2 f (m+1)(u1; :::; um+1) =
f (u1; :::; um) arbitrary, so that (u1; :::; um+1)j(¡1;t1 ) = (v1; :::; vm+1)j(¡1;t1).
From the fact that f is non-anticipatory we have the existence of y 2 f (v1; :::; vm) =
f (m+1)(v1; :::; vm+1) so that xj(¡1;t1) = yj(¡1;t1) i.e. f (m+1) is non-anticipatory.

The part of the proof corresponding to fi!j and fbui is similar.

Theorem 54 If f; g are non-anticipatory systems, then f[g is non-anticipatory.

Proof. Let t1; u; v and x 2 f (u) [ g(u) arbitrary so that uj(¡1;t1) =
vj(¡1;t1). If for example x 2 f (u), then the fact that f is non-anticipatory
shows the existence of y 2 f (v) so that xj(¡1;t1) = yj(¡1;t1); we conclude that
y 2 f (u) [ g(u) exists with xj(¡1;t1) = yj(¡1;t1 ).

Theorem 55 If f is non-anticipatory, then its initial state function Á satis¯es

8u; 8v; u(0 ¡ 0) = v(0 ¡ 0) =) Á(u) = Á(v)

Proof. Let u;v arbitrary so that u(0¡0) = v(0¡0), thus some t1 exists with
uj(¡1;t1) = vj(¡1;t1). From the non-anticipation of f we get 8x 2 f (u); 9y 2
f (v);xj(¡1;t1) = yj(¡1;t1) thus 8x0 2 Á(u) we have that x0 2 Á(v).

Theorem 56 If f ;f 1; :::; f p are non-anticipatory systems, then f ± (f 1; :::; f p)
is non-anticipatory.

Proof. Let u1; :::; up ;v1; :::; vp and t1 arbitrary with

u1j(¡1;t1 ) = v1j(¡1;t1); :::; u
p j(¡1;t1 ) = vpj(¡1;t1)
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and x 2 (f ± (f 1; :::; f p))(u1; :::; up) arbitrary also, thus y1 2 f 1(u1); :::; yp 2
f p(up) exist so that x 2 f (y1; :::; yp). Because f 1; :::; f p are non-anticipatory,
z1 2 f 1(v1); :::; zp 2 f p (vp) exist so that

y1j(¡1;t1) = z1j(¡1;t1); :::; y
pj(¡1;t1) = zpj(¡1;t1)

and because f is non-anticipatory we get the existence of x0 2 f (z1; :::; zp ) with
xj(¡1;t1) = x0j(¡1;t1). f ± (f 1; :::; f p) is non-anticipatory.

Theorem 57 Any autonomous system X ½ S(n) is non-anticipatory.

Proof. For any t1 we have

8x 2 X; 9y 2 X; xj(¡1;t1) = yj(¡1;t1)

thus the conclusion of De¯nition 50 is true.

Corollary 58 If f is non-anticipatory and X ½ S(n), the system f [ X is
non-anticipatory.

Proof. The result follows from Theorem 54 and Theorem 57.

Theorem 59 If f is a deterministic system (understood as S(m) ! S(n) func-
tion), then the next statements are equivalent:

a) f is non-anticipatory

b) 8t1; 8u;8v; (uj(¡1;t1 ) = vj(¡1;t1)) =) (f (u)j(¡1;t1) = f (v)j(¡1;t1))

Proof. Obvious.

Remark 60 Proving that f; g non-anticipatory implies that f\g is non-anticipatory
was unsuccesful. This leaves open the problem of ¯nding two non-anticipatory
systems f; g so that 8u; f (u) \ g(u) 6= ; and f \ g is anticipatory.

11. Time invariance

De¯nition 61 The system f is time invariant if 8u 2 S(m);8x 2 S(n); 8d 2 R;
one of the next equivalent statements is ful¯lled:

a) (u ± ¿d 2 S(m) and x 2 f (u)) =) (x ± ¿ d 2 S(n) and x ± ¿d 2 f (u ± ¿d ))

b) ((u ± ¿ d 2 S(m) and x 2 f (u)) =) x ± ¿d 2 S(n)) and ((u ± ¿d 2 S(m) and
x 2 f (u)) =) x ± ¿ d 2 f (u ± ¿ d))

If the previous property is not true, then f is called time variable.
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Remark 62 If the signals would have been de¯ned by replacing the request of
existence of an initial time instant t0 ¸ 0 with the existence of an arbitrary
initial time instant t0, then time invariance would have simply been de¯ned by
8u; 8x; 8d; (x 2 f (u) =) x ± ¿d 2 f (u ± ¿d )). The way that S was de¯ned
however, it is tightly related with the ¯rst de¯nition of non-anticipation: time
invariance is the property of the non-anticipatory systems (De¯nition 41) of
satisfying x ± ¿d 2 f (u ± ¿d) whenever u ± ¿d 2 S(m) and x 2 f (u) hold.

Example 63 We analize two deterministic systems.
a) We show that f(u) = fui ± ¿d0g is time invariant, where i 2 f1; :::; mg

and d0 ¸ 0. The hypothesis u ± ¿d 2 S(m) states that ui ± ¿d 2 S, from where
(ui ± ¿d ) ± ¿ d0 2 S and we have

- (ui ± ¿d) ± ¿d0
= ui ± ¿d+d0

= (ui ± ¿ d0
) ± ¿d 2 S (x ± ¿ d 2 S)

- (ui ±¿ d0
)± ¿d = (ui ±¿d )±¿d0

(x±¿ d 2 f (u± ¿d))
b) Let the system de¯ned by the equation

x(t) = lim
»!1

[

!2(»;1)

(u1(!) ¢ ::: ¢ um(!)) (11)

(the function in » :
S

!2(»;1)
(u1(!) ¢ ::: ¢ um(!)) switches at most once from 1 to

0 for all u, thus the limit lim
»!1

S
!2(»;1)

(u1(!) ¢ ::: ¢ um(!)) always exists and (11)

de¯nes a system indeed). Because x is the constant function, x ± ¿d 2 S is true
for any d, thus the system is non-anticipatory in the sense of De¯nition 41. By
observing that for any d 2 R;

lim
»!1

[

!2(»;1)

(u1(!¡d)¢:::¢um(!¡d)) = lim
»!1

[

!2(»;1)

(u1(!)¢:::¢um(!)) = x(t) = x(t¡d)

the second statement from De¯nition 61 b) results. The system is time invariant.

Theorem 64 Let f time invariant. The next equivalence holds:

8u; 8x;8d ¸ 0; x 2 f (u) () x ± ¿d 2 f (u ± ¿d)

Proof. =) The statements u ± ¿d 2 S(m) and x 2 f (u) are both true. We
apply the time invariance of f .

(= (u ± ¿d)± ¿¡d 2 S(m) and x ± ¿d 2 f (u ± ¿d ) are true. We apply the time
invariance of f again and we get (x ± ¿d) ± ¿¡d 2 f ((u ± ¿d) ± ¿¡d ).

Theorem 65 Let f time invariant and i; j 2 f1; :::; mg; i 6= j: f ; f(m+1); fi!j ;
fbui are time invariant.

Proof. f ; f (m+1); fi!j; fbui are non-anticipatory (De¯nition 41) from Theo-
rem 45. From the truth of the implication

(u ± ¿d 2 S(m) and x 2 f (u)) =) x ± ¿d 2 f (u ± ¿d )

19



for all u; x and d we get the truth of

(u ± ¿d 2 S(m) and x 2 f (u)) =) x ± ¿d 2 f (u ± ¿d )

thus f is time invariant.
This part of the proof brings nothing new in the other three cases.

Theorem 66 If f; g are time invariant, then f \ g; f [ g are time invariant.

Proof. f \ g; f [ g are non-anticipatory (De¯nition 41) from Theorem 47.
From the truth for all u; x; d of

(u ± ¿d 2 S(m) and x 2 f (u)) =) x ± ¿d 2 f (u ± ¿d )

(u ± ¿d 2 S(m) and x 2 g(u)) =) x ± ¿d 2 g(u ± ¿d)

we infer with simple computations that

(u ± ¿d 2 S(m) and x 2 (f \ g)(u)) =) x ± ¿d 2 (f \ g)(u ± ¿d )

(u ± ¿d 2 S(m) and x 2 (f [ g)(u)) =) x ± ¿d 2 (f [ g)(u ± ¿d )

are ful¯lled.

Theorem 67 We suppose that f; f 1; :::; f p are time invariant. Then f±(f 1; :::; f p)
is time invariant.

Proof. f ± (f 1; :::; f p) is non-anticipatory (De¯nition 41), as resulting from
Theorem 48. Let now (u1; :::; up); x 2 f ± (f 1; :::; f p)(u1; :::; up ) arbitrary and
y1 2 f 1(u1); :::; yp 2 f p(up) so that x 2 f (y1; :::; yp). The hypothesis states
that

u1 ± ¿d 2 S(m1); :::; up ± ¿d 2 S(mp)

are true and from the time invariance of f 1; :::; f p we get that

y1 ± ¿ d 2 f 1(u1 ± ¿d ); :::; yp ± ¿ d 2 f p(up ± ¿d)

are true. But f is time invariant itself thus x ± ¿d 2 f (y1 ± ¿d ; :::; yp ± ¿ d).
f ± (f 1; :::; f p) is time invariant.

Theorem 68 The next statements are equivalent:

a) f is autonomous and time invariant

b) 9X; f = X and 8x 2 X; x is the constant function.

Proof. a) =) b) f is autonomous and non-anticipatory (De¯nition 41) thus
b) is true from Theorem 46:

b) =) a) f is autonomous and non-anticipatory from Theorem 46. Further-
more the truth of

(u ± ¿d 2 S(m) and x 2 X) =) x ± ¿d 2 X

(because x = x ± ¿d when x is constant) shows the validity of a).
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Corollary 69 If f is time invariant and X satis¯es 8x 2 X; x is the constant
function, then f \ X; f [ X are time invariant.

Proof. This results from Theorem 66 and Theorem 68.

12. Symmetry, the ¯rst de¯nition
De¯nition 70 The Boolean function F : Bm ! Bn is called (coordinatewise)
symmetrical if for any bijection ¾ : f1; :::; mg ! f1; :::; mg we have

8¸ 2 Bm; F (¸) = F (¸¾)

and asymmetrical otherwise.

De¯nition 71 The system f is (coordinatewise) symmetrical if for any bijec-
tion ¾ we have

8u 2 S(m);f (u) = f (u¾)

and it is asymmetrical otherwise.

Example 72 All the systems with m = 1 are trivially symmetrical and the
systems from Example 3 (3), (4), respectively from Example 63 b) are also
symmetrical. If F : Bm ! Bn is a symmetrical function, then the deterministic
system induced by F (Example 25) is symmetrical. The system

f (u) = fxjx(t) ¸ u1(t) ¢ ::: ¢ um(t)g

is symmetrical too.

Theorem 73 f is symmetrical implies that f is symmetrical.

Proof. f (u) = fxjx 2 f (u)g = fxjx 2 f (u¾)g = f (u¾ ) are true for all ¾
and u.

Theorem 74 Let f; g symmetrical systems. Then f \ g; f [ g are symmetrical
systems.

Proof. We can write for ¾; u and x arbitrary:
x 2 (f \ g)(u) () x 2 f (u) and x 2 g(u) () x 2 f (u¾) and x 2

g(u¾) () x 2 (f \ g)(u¾ )
The proof for the reunion is similar.

Theorem 75 If f is symmetrical, then Á is symmetrical.

Proof. For any ¾ and u we have Á(u) = fx(0¡0)jx 2 f(u)g = fx(0¡0)jx 2
f (u¾)g = Á(u¾ ).
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Remark 76 If f 1; :::; f p are symmetrical systems, then the next symmetry re-
lation holds

f ± (f 1; :::; f p)(u1; :::; up ) = f ± (f¾0(1); :::; f¾ 0(p))(u¾0(1)
¾¾0(1)

; :::; u¾ 0(p)
¾¾0(p)

)

where ¾i : f1; :::; mig ! f1; :::; mig; i = 1; p and ¾0 : f1; :::; pg ! f1; :::; pg
are bijections. We observe that f ± (f 1; :::; f p) is not a symmetrical system in
general.

Theorem 77 If f is autonomous, then it is symmetrical.

Proof. 9X; 8u; f(u) = X implies for any bijection ¾ : f1; :::; mg ! f1; :::; mg
that f (u¾) = X

Corollary 78 If f is symmetrical, then f \ X; f [ X are symmetrical.

Proof. This fact results from Theorem 74 and Theorem 77.

13. Symmetry, the second de¯nition
De¯nition 79 The function F : Bm ! Bn is called symmetrical (in the rising-
falling sense) if

8¸ 2 Bm; F (¸) = F (¸)

and asymmetrical otherwise.

De¯nition 80 The system f is symmetrical (in the rising-fal ling sense) if

8u; f (u) = f (u)

and respectively asymmetrical otherwise.

Remark 81 This type of symmetry of f states that the form of x under the
input u coincides with the form of x under the input u and the terminology of
rising-falling symmetry is due to the fact that while x(t) switches at the time
instant t in the rising (falling) sense, x(t) switches at the time instant t in the
falling (rising) sense:

8i 2 f1; :::; ng; xi(t ¡ 0)¢xi(t) = xi(t ¡ 0)¢xi(t); xi(t¡0)¢xi(t) = xi(t ¡ 0)¢xi(t)

Example 82 Some examples of symmetrical functions F (¸) (De¯nition 79)
are the a±ne functions: ¸i; i = 1; m, ¸i1 © ¸i2 © ¸i3; i1; i2; i3 2 f1; :::; mg, etc.
The symmetrical Boolean functions de¯ne symmetrical deterministic systems,
for example F : B3 ! B; F (¸1; ¸2;¸3) = ¸1 © ¸2 © ¸3 is symmetrical and it
de¯nes the symmetrical deterministic system f (u) = fu1 © u2 © u3g.

Let now the non-deterministic system f (u) = fu1 ¢ u2g [ fu1 _ u2g. The
satisfaction of the Morgan laws

x(t) = u1(t) ¢ u2(t) () x(t) = u1(t) _ u2(t)

x(t) = u1(t) _ u2(t) () x(t) = u1(t) ¢ u2(t)

shows that it is symmetrical.
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Theorem 83 If f is symmetrical, then f ; f (m+1); fi!j and fbui are symmetrical
for all i; j 2 f1; :::; mg; i 6= j.

Proof. The conditions of symmetry

8u; f (u) = f (u)

8u; f (u) = f (u)

of f and f are equivalent, proving the ¯rst statement of the theorem.
We suppose that f is symmetrical. For any (u1; :::; um+1) we can write

f (m+1)(u1; :::; um+1) = f (u1; :::; um) = f (u1; :::; um ) = f (m+1)(u1; :::; um+1)

fi!j (u1; :::;ui
i
; :::; uj

j
; :::; um) = f (u1; :::; ui

i
; :::;ui

j
; :::; um) =

= f (u1; :::; ui
i
; :::;ui

j
; :::; um) = fi!j(u1; :::; ui

i
; :::; uj

j
; :::; um)

fbui(u1; :::; bui ; :::; um) = f (u1; :::; 0
i
; :::; um) = f (u1; :::; 0

i
; :::; um) = fbui(u1; :::; bui ; :::; um)

and these prove the last three statements of the Theorem.

Theorem 84 If the systems f ; g are symmetrical, then the systems f \ g and
f [ g are symmetrical.

Proof. 8u; 8x; x 2 (f \ g)(u) () x 2 f (u) and x 2 g(u) () x 2
f (u) and x 2 g(u) () x 2 (f \ g)(u) () x 2 (f \ g)(u)

and similarly for the second statement.

Theorem 85 If f is symmetrical, then the next formula is true

8u; Á(u) = Á(u)

Proof. 8u;Á(u) = fx(0 ¡ 0)jx 2 f (u)g = fx(0 ¡ 0)jx 2 f (u)g = Á(u)

Theorem 86 If f; f 1; :::; fp are symmetrical systems, then f ± (f 1; :::; f p) is
symmetrical.

Proof. 8(u1; :::; up); 8x; x 2 f ± (f 1; :::;f p )(u1; :::; up) ()
() 9y1 2 f 1(u1); :::; 9yp 2 f p(up) s:t: x 2 f (y1; :::; yp)
() 9y1 2 f 1(u1); :::; 9yp 2 f p(up) s:t: x 2 f (y1; :::; yp)
() x 2 f ± (f 1; :::; f p)(u1; :::;up) () x 2 f ± (f1; :::; f p)(u1; :::; up)

Theorem 87 Let f = X an autonomous system, with X ½ S(n). The next
statements are equivalent:

a) f is symmetrical

b) 8x;x 2 X () x 2 X
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Proof. 8u; f (u) = f (u) = X and the equivalence between a) and b) is easily
proved

Corollary 88 If f is symmetrical and X ½ S(n) satis¯es

8x; x 2 X () x 2 X

then f \ X and f [ X are symmetrical.

Proof. From Theorem 84 and 87.

14. Stability
De¯nition 89 We consider the Boolean function F : Bm ! Bn and the next
properties of the system f :

a) absolute stability

8u; 8x 2 f (u); 9t1; 8t ¸ t1; x(t) = x(t1)

b) relative stability

8u; 8x 2 f (u); (9t1; 8t ¸ t1; u(t) = u(t1)) =) (9t1; 8t ¸ t1; x(t) = x(t1))

c) stability relative to F :

8u;8x 2 f (u);(9t1; 8t ¸ t1; F (u(t)) = F (u(t1))) =) (9t1; 8t ¸ t1;x(t) = x(t1))

d) delay-insensitivity relative to F :

8u;8x 2 f (u);(9t1; 8t ¸ t1; F (u(t)) = F (u(t1))) =) (9t1; 8t ¸ t1;x(t) = F (u(t1)))

Remark 90 The stability problem is that of the existence of the limit lim
t!1

x(t) and De¯nition 89 states such stability conditions true for any u and any
x 2 f (u), the next implications being true:

a) =) c) (= d)
+
b)

In De¯nition 89, F is the 'Boolean function to be computed' and F (u(t)) is the
cause of x. When the cause is persistent in the sense that lim

t!1
F (u(t)) exists

and if f is delay-insensitive relative to F , we have lim
t!1

x(t) = lim
t!1

F (u(t)), the
so called 'unbounded delay model' giving the manner in which the values of x
reproduce the values of F (u). The stability of f relative to F should be inter-
preted like this: when the cause is persistent, thus lim

t!1
F (u(t)) exists, we have

that lim
t!1

x(t) exists, thus f is stable, but the two limits are not necessarily equal;
this phenomenon is called hazard when we regard the states of f as starting, but
not completing (correctly) the computation of F (u) and another possibility exists
also that the states of f (u) do not compute F (u).
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Example 91 The systems from Example 13 (9), (10), respectively from Exam-
ple 63 (11) are absolutely stable. The system

f (u) = fxj9t1; 8t ¸ t1; x(t) = u1(t) ¢ ::: ¢ um(t)g
is delay-insensitive relative to F (¸) = ¸1 ¢ ::: ¢ ¸m and relatively stable, but it is
not absolutely stable;

f (u) = fxj9t1; 8t ¸ t1; x(t) =
½0; if 9 lim

»!1
u1(») ¢ ::: ¢ um(»)

u1(t); else
g

is relatively stable and stable relative to F (¸) = ¸1 ¢ ::: ¢ ¸m but it is neither
absolutely stable, nor delay-insensitive relative to F and

f (u) = fxj9t1; 8t ¸ t1; x(t) =
½0; if 9 lim

»!1
u(»)

u1(t); else
g

is relatively stable, but it is not absolutely stable. For F (¸) = ¸2 , by tak-
ing (u1; u2; :::; um ) = (Â[0;1)[[2;3)[[4;5)[:::; 0; :::; 0) we remark that f is not stable
relative to F .

Theorem 92 The next statements are equivalent:
a) f is absolutely stable
b) f is stable relative to the constant function
and the next statements are also equivalent for ¹ 2 Bn:
i) 8u;8x 2 f (u);9t1;8t ¸ t1; x(t) = ¹
ii) f is delay-insensitive relative to the constant function F = ¹.

Proof. a)()b) is true because a) is the conclusion of b), where b) has a
hypothesis always ful̄ lled.

i)()ii) takes place in similar conditions with the previous equivalence.

Theorem 93 If F; G : Bm ! Bn are two Boolean functions with

8¸; 8¸0; F (¸) = F (¸0) =) G(¸) = G( 0̧) (12)

and if the system f is stable relative to G, then it is stable relative to F .

Proof. We suppose that f is stable relative to G:

8u; 8x 2 f (u); (9t1;8t ¸ t1; G(u(t)) = G(u(t1))) =) (9t1; 8t ¸ t1; x(t) = x(t1))

and let u; x 2 f (u) arbitrary so that

9t1; 8t ¸ t1; F (u(t)) = F (u(t1))

The hypothesis (12) states that

9t1; 8t ¸ t1;G(u(t)) = G(u(t1))

from where
9t1; 8t ¸ t1; x(t) = x(t1)

and f is stable relative to F .
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Theorem 94 Let the Boolean function F and the system f . If f is absolutely
stable (relatively stable, stable relative to F , delay-insensitive relative to F ), then
the systems f ; f (m+1); fi!j ; fbui are absolutely stable (relatively stable, stable rel-
ative to F; F (m+1); Fi!j ; Fbui, delay-insensitive relative to F; F (m+1); Fi!j ;Fbui),
where i; j 2 f1; :::; mg; i 6= j and F ; F (m+1); Fi!j; Fbui are de¯ned by:

F : Bm ! Bn; F (¸1; :::; ¸m) = F (¸1; :::; ¸m)

F (m+1) : Bm+1 ! Bn; F (m+1)(¸1; :::; ¸m+1) = F (¸1; :::; ¸m)

Fi!j : Bm ! Bn; Fi!j(¸1; :::; ¸m) = F (¸1; :::; ¸i
i
; :::; ¸i

j
; :::; ¸m)

Fbui : Bm¡1 ! Bn ; Fbui(¸1; :::; b̧i; :::; ¸m) = F (¸1; :::; 0
i
; :::;¸m)

Proof. We suppose that f is delay insensitive relative to F :

8u; 8x 2 f (u); (9t1;8t ¸ t1; F (u(t)) = F (u(t1))) =) (9t1; 8t ¸ t1; x(t) = F (u(t1)))

from where

8u; 8x 2 f (u); (9t1;8t ¸ t1; F (u(t)) = F (u(t1))) =) (9t1; 8t ¸ t1; x(t) = F (u(t1)))

i.e. f is delay-insensitive relative to F . Moreover, we observe that

8(u1; :::; um+1); 8x 2 f (u1; :::;um) = f (m+1)(u1; :::;um+1);

(9t1; 8t ¸ t1; F (m+1)(u1(t); :::; um+1(t)) = F (m+1)(u1(t1); :::; um+1(t1))) ()
() (9t1; 8t ¸ t1; F (u1(t); :::;um(t)) = F (u1(t1); :::; um(t1))) =)

=) (9t1; 8t ¸ t1; x(t) = F (u1(t1); :::; um(t1)) ()
() (9t1;8t ¸ t1; x(t) = F (m+1)(u1(t1); :::; um+1(t1))

meaning that f (m+1) is delay-insensitive relative to F (m+1) etc

Remark 95 If f is stable relative to F , then it is stable relative to F .

Theorem 96 Let the systen f be absolutely stable (relatively stable, stable rel-
ative to F , delay-insensitive relative to F ). The next statements are true:

a) Any system f 0 ½ f is absolutely stable (relatively stable, stable relative to
F , delay-insensitive relative to F )

b) If the system g is absolutely stable (relatively stable, stable relative to F ,
delay-insensitive relative to F ) then f [ g is absolutely stable (relatively
stable, stable relative to F , delay-insensitive relative to F ).

Proof. b) We suppose that f ;g are delay-insensitive relative to F and let
u; x 2 (f [ g)(u) arbitrary, for example x 2 f (u). We have

(9t1; 8t ¸ t1; F (u(t)) = F (u(t1))) =) (9t1;8t ¸ t1; x(t) = F (u(t1)))

from where we infer the delay-insensitivity of f [ g relative to F .
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Corollary 97 If f is absolutely stable (relatively stable, stable relative to F ,
delay-insensitive relative to F ), then f \ X and f \ g are absolutely stable
(relatively stable, stable relative to F , delay-insensitive relative to F ), for any
X ½ S(n) and any system g.

Proof. Special case of Theorem 96 a).

Theorem 98 Let the functions F : Bm ! Bn; F i : Bmi ! Bni ; i = 1; p and
the systems f : S(m) ! P ¤(S(n));f i : S(mi) ! P ¤(S(ni)); i = 1; p so that
n1 + ::: + np = m .

a) If f ;f 1; :::; f p are relatively stable (stable relative to F; F 1; :::; F p , delay-
insensitive relative to F; F 1; :::; F p ), then f ± (f 1; :::; f p) is relatively sta-
ble (stable relative to F ± (F 1; :::;F p), delay-insensitive relative to F ±
(F 1; :::; F p))

b) If f is absolutely stable, then f ± (f 1; :::; f p) is absolutely stable.

Proof. a) We suppose for example that f 1; :::;f p are stable relative to
F 1; :::; F p:

8u1; 8y1 2 f 1(u1);(9t1; 8t ¸ t1; F 1(u1(t)) = F 1(u1(t1))) =) (9t1; 8t ¸ t1; y1(t) = y1(t1))

:::

8up; 8yp 2 f p(up); (9t1; 8t ¸ t1; F p(up(t)) = F p(up(t1))) =) (9t1; 8t ¸ t1; yp(t) = yp(t1))

or equivalently

8(u1; :::; up); 8y 2 (f 1; :::; f p)(u1; :::; up);

(9t1; 8t ¸ t1; (F 1; :::; F p)(u1(t); :::; up(t)) = (F 1; :::; F p)(u1(t1); :::; up(t1))) =)
=) (9t1; 8t ¸ t1; y(t) = y(t1))

We have noted y = (y1; :::; yp) and we suppose from now that (u1; :::; up);y are
arbitrary, ¯xed. Because f is stable relative to F , we can write

8x 2 f (y); (9t1; 8t ¸ t1; F (y(t)) = F (y(t1))) =) (9t1; 8t ¸ t1; x(t) = x(t1))

f ± (f 1; :::; f p) is stable relative to F ± (F 1; :::; F p ).
b) Let u1; :::; up; y1 2 f 1(u1); :::; yp 2 f p (up) and x 2 f (y1; :::; yp) arbitrary.

t1 exists so that 8t ¸ t1; x(t) = x(t1) from where the conclusion that f ±
(f1; :::; f p) is absolutely stable follows.

Theorem 99 Let the Boolean function F and the set X ½ S(n) that is identi¯ed
with an autonomous system f . The next statements are equivalent:

a) 8x 2 X; 9t1; 8t ¸ t1; x(t) = x(t1)
b) f is absolutely stable
c) f is relatively stable
d) f is stable relative to F
and the next statements are also equivalent for some ¹ 2 Bn:
i) 8x 2 X; 9t1; 8t ¸ t1; x(t) = ¹
ii) f is delay-insensitive relative to the constant function F = ¹.
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Proof. a) and b) are obviously equivalent. We suppose that f is relatively
stable and we choose u so that 9t1; 8t ¸ t1; u(t) = u(t1). Then a) takes place and
because the hypothesis depending on u implies a conclusion that is independent
on u, we have that c) implies a). The implication a)=)c) is obvious.

a)()d) is shown similarly with a)()c).
i)()ii) takes place because i) is the conclusion of the request of delay-

insensitivity of f relative to F = ¹.

15. Fundamental mode
De¯nition 100 Let the Boolean function F : Bm ! Bn , the system f : S(m) !
P ¤(S(n)), the input u 2 S(m) and the state x 2 f (u). We suppose that an
unbounded sequence 0 · t0 < t1 < t2 < ::: exists so that the next properties be
stated:

8t < t0; u(t) = u(t0 ¡ 0) (13)

8k ¸ 0; 8t 2 [tk ; tk+1); u(t) = u(tk) (14)

8k ¸ 0; 8t 2 [tk; tk+1); F (u(t)) = F (u(tk )) (15)

8k ¸ 1; x ¢Â(¡1;tk) ©x(tk¡0)¢Â[tk;1) 2 f (u ¢Â(¡1;tk) ©u(tk ¡0) ¢Â[tk;1)) (16)

8k ¸ 1; x(tk ¡ 0) = F (u(tk ¡ 0)) (17)

The couple (u; x) is called
a) a pseudo-fundamental (operating) mode of f if (16) is true
b) a fundamental (operating) mode of f if (13), (14), (16) are true
c) a fundamental (operating) mode of f relative to F if (13), (15), (16) are

true
d) a delay-insensitive fundamental (operating) mode of f relative to F if

(13), (15), (16), (17) are true.

Remark 101 (u; x) is a pseudo-fundamental mode of f if the intervals [tk¡1; tk)
covering [0; 1) exist (from the unboundness of t0; t1; t2; :::) having the property
that u is allowed to take new values in [tk ; tk+1) possibly di®erent from the pre-
vious ones in [tk¡1; tk) only if x has stabilized (at some time instant situated
in the interval [tk¡1; tk) ) under the input u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1) to
the value x(tk ¡ 0). The forms of u; x do not matter, just the satisfaction of
the stability condition 100 (16), that characterizes t1; t2; t3; ::: as time instants
when u;x are in equilibrium. We shall consider that (u; x) are in equilibrium in
t0 too.

(u; x) is a fundamental mode of f if the satisfaction of the stability condi-
tion 100 (16) takes place for u constant in (¡1; t0) and also in each interval
[tk¡1; tk) and (u; x) is a fundamental mode of f relative to F if the condition
100 (14) is relaxed to 100 (15). Here the role of F is that of 'Boolean function
to be computed', to be compared with the delay-insensitivity of f relative to F ,
De¯nition 89 d), whose hypothesis 9t1; 8t ¸ t1; F (u(t)) = F (u(t1)) was replaced
by 100 (15) and whose conclusion 9t1; 8t ¸ t1; x(t) = F (u(t1)) was replaced by
100 (16), (17).
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The absence of the satisfaction of 100 (17) between the previous properties
indicates either the presence of hazard: the states of the system are supposed to
start the computation of F (u) and this computation is unsuccessful eventually,
or the fact that the state x 2 f (u) is not related with the computation of F (u).

The de¯nitions that are grouped in 100 include the possibility u(tk ) = u(tk+1),
respectively F (u(tk )) = F (u(tk+1)) or 9k; u(tk ) = u(tk+1) = :::, respectively
9k; F (u(tk )) = F (u(tk+1)) = :::

Theorem 102 For F; f; u; x 2 f(u) and 0 · t0 < t1 < t2 < ::: unbounded,
we suppose that some of the requests 100 (13),...,(17) are satis¯ed. The same
properties are satis¯ed if we replace the sequence 0 · t0 < t1 < t2 < ::: with
0 · t0

0 < t0
1 < t0

2 < ::: where

t
0
0 = t0; t

0
1 = t1; :::; t

0
k = ¿; t

0
k+1 = tk ; t

0
k+2 = tk+1; :::

with k ¸ 1 arbitrary and ¿ 2 (tk¡1; tk ) chosen su±ciently close to tk.

Proof. We ¯x k ¸ 1 and tk arbitrary the next properties that derive from
100 (14), (16), (17) being satis¯ed

8t 2 [tk¡1; tk); u(t) = u(tk¡1) (18)

x ¢ Â(¡1;tk) © x(tk ¡ 0) ¢ Â[tk;1) 2 f (u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1)) (19)

x(tk ¡ 0) = F (u(tk ¡ 0)) (20)

We have the existence of some " > 0 so that

8t 2 (tk ¡ "; tk ); x(t) = x(tk ¡ 0)

because x has a left limit in tk and for any ¿ 2 (tk ¡ "; tk ) \ (tk¡1; tk ) we infer
the truth of

8t 2 [tk¡1; ¿); u(t) = u(tk¡1) and 8t 2 [¿; tk ); u(t) = u(¿)

x ¢ Â(¡1;¿ ) © x(¿ ¡ 0) ¢ Â[¿ ;1) 2 f (u ¢ Â(¡1;¿ ) © u(¿ ¡ 0) ¢ Â[¿ ;1)) and (19)

x(¿ ¡ 0) = F (u(¿ ¡ 0)) and (20)

thus the insertion of such a ¿ between the elements of (tk ) leaves the relations
100 (14), (16), (17) true. The situation is similar if we refer to 100 (15) instead
of 100 (14).

De¯nition 103 Let (u; x) a pseudo-fundamental mode of f (a fundamental
mode of f , a fundamental mode of f relative to F , a delay-insensitive fundamen-
tal mode of f relative to F ) and the unbounded sequence 0 · t0 < t1 < t2 < :::
with the property that the relations 100 (16) (the relations 100 (13), (14), (16),
the relations 100 (13), (15), (16), the relations 100 (13), (15), (16), (17)) are
ful¯lled. Then we say that the sequence (tk) is compatible with the mode (u; x).
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De¯nition 104 We suppose that (u; x) is a pseudo-fundamental mode of f and
let 0 · t0 < t1 < t2 < ::: compatible with it. The functions

u(k) = u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1) (21)

x(k) = x ¢ Â(¡1;tk) © x(tk ¡ 0) ¢ Â[tk;1) (22)

k ¸ 1 are called initial segments, or pre¯xes (relative to (tk)) of u; x and the
couples (u(tk ¡ 0); x(tk ¡ 0));k ¸ 1 are called points of equilibrium of f . By
de¯nition (u(t0 ¡ 0); x(t0 ¡ 0)) is a point of equilibrium of f too.

Theorem 105 F; f; u; x 2 f (u) and the unbounded sequence 0 · t0 < t1 <
t2 < ::: are given.

a) Let (u; x) a pseudo-fundamental mode of f (a fundamental mode of f ,
a fundamental mode of f relative to F , a delay-insensitive fundamental mode
of f relative to F ) so that (tk) be compatible with it. Then (u(k); x(k)) are
pseudo-fundamental modes of f (fundamental modes of f , fundamental modes
of f relative to F , delay-insensitive fundamental modes of f relative to F ) for
all k ¸ 1.

b) Let the couples (u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1); x ¢ Â(¡1;tk) © x(tk ¡ 0) ¢
Â[tk;1)) pseudo-fundamental modes of f (fundamental modes of f , fundamental
modes of f relative to F , delay-insensitive fundamental modes of f relative to
F ) for all k ¸ 1. Then (u; x) is a pseudo-fundamental mode of f (a funda-
mental mode of f , a fundamental mode of f relative to F , a delay-insensitive
fundamental mode of f relative to F ) and (tk ) is compatible with it.

Proof. a) We suppose for example that 100 (13), (15), (16), (17) are satis-
¯ed, we ¯x k0 ¸ 1 and we infer

8t < t0; u(k0)(t) = u(k0)(t0 ¡ 0) = u(t0 ¡ 0)

8t 2 [tk ; tk+1); F (u(k0)(t)) = F (u(k0)(tk )) =
½

F (u(tk )); 0 · k < k 0

F (u(tk0¡1)); k ¸ k0

On the other hand, the property

x(k0) ¢ Â(¡1;tk) ©x(k0)(tk ¡0) ¢ Â[tk;1) 2 f (u(k0) ¢ Â(¡1;tk) ©u(k0)(tk ¡ 0) ¢ Â[tk;1))

coincides with 100 (16) for 1 · k · k0 and with

x(k0)¢Â(¡1;tk0)©x(k0)(tk0 ¡0)¢Â[tk0 ;1) 2 f (u(k0)¢Â(¡1;tk0)©u(k0)(tk0 ¡0)¢Â[tk0;1))

for k > k0 and eventually the property

x(k0)(tk ¡ 0) = F (u(k0)(tk ¡ 0))

coincides with 100 (17) for 1 · k · k0 and with

x(k0)(tk0 ¡ 0) = F (u(k0)(tk0 ¡ 0))
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for k > k 0. (u(k0); x(k0)) is a delay insensitive fundamental mode of f relative to
F , the property being true for any k 0 ¸ 1.

b) Let u; x 2 f (u); 0 · t0 < t1 < t2 < ::: unbounded and k0 ¸ 1 arbitrary,
¯xed so that u(k0); x(k0) de¯ned like at 104 (21), (22) satisfy for example 100
(13), (15), (16), (17) i.e. (u(k0); x(k0)) is a delay-insensitive fundamental mode
of f relative to F . u; x satisfy 100 (13); 100 (15), (16), (17) are satis¯ed for
0 · k · k 0; 1 · k · k0, 1 · k · k0 and when k 0 is variable, we have that (u; x)
is a delay-insensitive fundamental mode of f relative to F .

Theorem 106 Let F; f; u and x 2 f (u). The next statements are true:
a) If (u; x) is a fundamental mode of f , then (u; x) is a fundamental mode

of f relative to F
b) If F is injective and (u; x) is a fundamental mode of f relative to F , then

(u; x) is a fundamental mode of f
c) If (u;x) is a fundamental mode of f (relative to F ), then it is a pseudo-

fundamental mode of f:

Proof. 100 (14) implies 100 (15) for any F and if F is injective, then 100
(15) implies 100 (14).

Theorem 107 The next statements are equivalent:
a) (u; x) is a fundamental mode of f
b) for any function F , (u;x) is a fundamental mode of f relative to F:

Proof. b) =) a) Let F i : Bm ! Bn ; 8¸ 2 Bm; F i(¸) = ( i̧ ; 0; :::; 0) and
0 · ti

0 < ti
1 < ti2 < ::: unbounded so that 100 (13), (15), (16) be satis¯ed for all

i 2 f1; :::; mg. If 0 · t0 < t1 < t2 < ::: is the sequence obtained by indexing the
family (t1k) [ ::: [ (tm

k ) we remark that 100 (13), (14), (16) are ful¯lled.

Theorem 108 a) Let the non-anticipatory (De¯nition 50) relatively stable sys-
tem f and the family of vectors uk 2 Bm; k 2 N. The input u 2 S(m):

u(t) = u0 ¢ Â[to ;t1)(t) © u1 ¢ Â[t1;t2)(t) © :::

and the state x 2 f (u) exist so that (u; x) is a fundamental mode of f .
b) Let the non-anticipatory (De¯nition 50) relatively stable systems f; f 1; :::; f p

and the family of vectors zk 2 Bm1+:::+mp; k 2 N. The input z 2 S(m1+:::+mp):

z(t) = z0 ¢ Â[to;t1 )(t) © z1 ¢ Â[t1 ;t2)(t) © :::

and the state x 2 f ± (f 1; :::; f p)(z) exist so that (z; x) is a fundamental mode
of f ± (f 1; :::; f p).

Proof. b) We consider the family of vectors zk 2 Bm1+:::+mp; k 2 N and
we ¯x t0 ¸ 0 arbitrary. For the input

z(1)(t) = z0 ¢ Â[t0;1)(t)
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from the relative stability of f ;f 1; :::; f p we infer the existence of y(1) 2 (f 1; :::; f p)(z(1));
x(1) 2 f (y(1)) and t1 > t0 so that

y(1)(t) = y(1)(t) ¢ Â(¡1;t1)(t) © y(1)(t1 ¡ 0) ¢ Â[t1;1)(t)

x(1)(t) = x(1)(t) ¢ Â(¡1;t1)(t) © x(1)(t1 ¡ 0) ¢ Â[t1;1)(t)

We de¯ne
z(2)(t) = z0 ¢ Â[t0;t1 )(t) © z1 ¢ Â[t1 ;1)(t)

From the non-anticipation and the relative stability of f; f 1; :::; f p we infer the
existence of y(2) 2 (f 1; :::;f p )(z(2)); x(2) 2 f (y(2)) and t2 > t1 so that

y(2)(t) = y(1)(t) ¢ Â(¡1;t1)(t) © y(2)(t) ¢ Â[t1;t2)(t) © y(2)(t2 ¡ 0) ¢ Â[t2;1)(t)

x(2)(t) = x(1)(t) ¢ Â(¡1;t1)(t) © x(2)(t) ¢ Â[t1 ;t2)(t) © x(2)(t2 ¡ 0) ¢ Â[t2;1)(t)

We can de¯ne in this moment

z(3)(t) = z0 ¢ Â[t0 ;t1)(t) © z1 ¢ Â[t1;t2)(t) © z2 ¢ Â[t2;1)(t)

:::

By using iteratively the non-anticipation and the relative stability of f; f 1; :::; fp

we obtain

z(k+1)(t) = z0 ¢ Â[t0;t1)(t) © z1 ¢ Â[t1;t2)(t) © ::: © zk ¢ Â[tk;1)(t)

y(k+1) 2 (f 1; :::; f p)(z(k+1)); x(k+1) 2 f (y(k+1)) and tk+1 > tk so that

y(k+1)(t) = y(1)(t)¢Â(¡1;t1)(t)©y(2)(t)¢Â[t1;t2)(t)©:::©y(k+1)(tk+1¡0)¢Â[tk+1 ;1)(t)

x(k+1)(t) = x(1)(t)¢Â(¡1;t1)(t)©x(2)(t)¢Â[t1;t2)(t)©:::©x(k+1)(tl+1¡0)¢Â[tk+1 ;1)(t)

The functions
z(t) = z0 ¢ Â[t0;t1 )(t) © z1 ¢ Â[t1 ;t2)(t) © :::

x(t) = x(1) ¢ Â(¡1;t1)(t) © x(2) ¢ Â[t1 ;t2)(t) © :::

satisfy the required property.

Theorem 109 a) Let the Boolean function F , the family of vectors xk 2
Range(F ); k 2 N and the non-anticipatory (De¯nition 50) system f that is
stable relative to F (that is delay-insensitive relative to F ). The input u 2 S(m):

u(t) = u0 ¢ Â[to ;t1)(t) © u1 ¢ Â[t1;t2)(t) © :::

and the state x 2 f (u) exist so that

8k 2 N; F (uk) = xk

and (u; x) is a fundamental mode of f relative to F (a delay-insensitive funda-
mental mode of f relative to F ).
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b) Let the Boolean functions F; F 1; :::; F p, the family of vectors xk 2 Range(F±
(F 1; :::; F p)); k 2 N and the non-anticipatory (De¯nition 50) systems f ;f 1; :::; f p

that are stable relative to F; F 1; :::; F p (that are delay-insensitive relative to
F; F 1; :::; F p). The input z 2 S(m1+:::+mp):

z(t) = z0 ¢ Â[to;t1 )(t) © z1 ¢ Â[t1 ;t2)(t) © :::

and the state x 2 f ± (f 1; :::; f p)(z) exist so that

8k 2 N; F ± (F 1; :::; F p )(zk) = xk

and (z;x) is a fundamental mode of f ±(f 1; :::; f p) relative to F ±(F 1; :::;F p) (a
delay-insensitive fundamental mode of f±(f 1; :::; f p) relative to F ±(F 1; :::;F p)).

Proof. b) We choose arbitrarily the family zk 2 Bm1+ :::+mp so that xk =
F ± (F 1; :::; F p)(zk ),k 2 N and the proof coincides with the one from 108 b),
where 'relative stability' is replaced by 'stability relative to F; F 1; :::; F p'. We
have in addition the condition of delay-insensitivity stating

y(k)(tk ¡ 0) = (F 1; :::; F p)(z(k)(tk ¡ 0))

x(k)(tk ¡ 0) = F (y(k)(tk ¡ 0))

for all k ¸ 1, from where we get

8k ¸ 1; x(tk ¡ 0) = x(k)(tk ¡ 0) = F (y(k)(tk ¡ 0)) =

= F ± (F 1; :::; F p)(z(k)(tk ¡ 0)) = F ± (F 1; :::; F p )(z(tk ¡ 0))

Theorem 110 We suppose that (u;x) is a pseudo-fundamental mode of f (a
fundamental mode of f, a fundamental mode of f relative to F , a delay-insensitive
fundamental mode of f relative to F ). Then (u; x) is a pseudo-fundamental
mode of f (a fundamental mode of f , a fundamental mode of f relative to F , a
delay-insensitive fundamental mode of f relative to F ).

Proof. Equations 100 (15),...,(17) imply

8k ¸ 0; 8t 2 [tk; tk+1); F (u(t)) = F (u(tk ))

8k ¸ 1; x ¢ Â(¡1;tk) © x(tk ¡ 0) ¢ Â[tk;1) 2 f (u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1))

8k ¸ 1; x(tk ¡ 0) = F (u(tk ¡ 0))

showing the statements of the Theorem.

Theorem 111 If (u; x) is a pseudo-fundamental mode of f (a fundamental
mode of f , a fundamental mode of f relative to F , a delay-insensitive funda-
mental mode of f relative to F ) and f ½ g, then (u;x) is a pseudo-fundamental
mode of g (a fundamental mode of g, a fundamental mode of g relative to F , a
delay-insensitive fundamental mode of g relative to F ).
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Proof. The condition

8k ¸ 1; x ¢ Â(¡1;tk) © x(tk ¡ 0) ¢ Â[tk;1) 2 g(u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1))

follows from 100 (16) and from the fact that f ½ g.

Theorem 112 We suppose that (u;x) is a pseudo-fundamental mode of f (a
fundamental mode of f, a fundamental mode of f relative to F , a delay-insensitive
fundamental mode of f relative to F ), that f is time invariant and let d 2 R
so that u ± ¿d 2 S(m). Then (u ± ¿ d; x ± ¿d) is a pseudo-fundamental mode of
f (a fundamental mode of f , a fundamental mode of f relative to F , a delay-
insensitive fundamental mode of f relative to F ).

Proof. We suppose that u is the constant function and from the time-
invariance of f we have that 8x 2 f (u); x is the constant function (Corollary 43
a)). If some of 100 (13),...,(17) are true, then by the replacement of u; x with
u ± ¿d = u; x ± ¿d = x the same statements are true.

We suppose now that u is not constant, implying the existence of

t0 = minftju(t ¡ 0) 6= u(t)g

and the hypothesis u ± ¿d 2 S(m) means that t0 + d ¸ 0. The truth of some
of the statements 100 (13),...,(17) implies the validity of these statements after
the replacement of u;x; 0 · t0 < t1 < t2 < ::: with u ± ¿d; x ± ¿d ; 0 · t0 + d <
t1 + d < t2 + d < ::: and we have supposed without loss that t0 = t0 (if x is
constant, this statement is obvious and if x is not constant, then

t" = minftjx(t ¡ 0) 6= x(t)g

exists and the non-anticipation -De¯nition 41- of f gives t0 · t", see Corollary
43 b), so that t0 = t0 is possible again).

Theorem 113 Let the coordinatewise symmetrical Boolean function F (De¯ni-
tion 70) and the coordinatewise symmetrical system f (De¯nition 71). If (u; x)
is a pseudo-fundamental mode of f (a fundamental mode of f , a fundamen-
tal mode of f relative to F , a delay-insensitive fundamental mode of f relative
to F ), then for all bijections ¾ : f1; :::; mg ! f1; :::; mg, (u¾; x) is a pseudo-
fundamental mode of f (a fundamental mode of f , a fundamental mode of f
relative to F , a delay-insensitive fundamental mode of f relative to F ).

Proof. From 100 (13),...,(17) and from the coordinatewise symmetry of F
and f we infer that

8t < t0; u¾(t) = u¾(t0 ¡ 0)

8k ¸ 0; 8t 2 [tk ; tk+1); u¾(t) = u¾(tk)

8k ¸ 0; 8t 2 [tk ; tk+1);F (u¾(t)) = F (u(t)) = F (u(tk )) = F (u¾(tk))

8k ¸ 1; x ¢ Â(¡1;tk) © x(tk ¡ 0) ¢ Â[tk;1) 2 f(u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1)) =
= f (u¾ ¢ Â(¡1;tk) © u¾(tk ¡ 0) ¢ Â[tk;1))
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8k ¸ 1; x(tk ¡ 0) = F (u(tk ¡ 0)) = F (u¾(tk ¡ 0))

are ful¯lled.

Theorem 114 Let the rising-falling symmetrical function F (De¯nition 79),
the rising-falling symmetrical system f (De¯nition 80), u 2 S(m) and x 2 f (u).
If (u; x) is a pseudo-fundamental mode of f (a fundamental mode of f , a fun-
damental mode of f relative to F , a delay-insensitive fundamental mode of f
relative to F ), then (u; x) is a pseudo-fundamental mode of f (a fundamental
mode of f , a fundamental mode of f relative to F , a delay-insensitive funda-
mental mode of f relative to F ).

Proof. We infer from 100 (13),...,(17) and from the hypothesis of rising-
falling symmetry of F; f that

8t < t0; u(t) = u(t0 ¡ 0)

8k ¸ 0; 8t 2 [tk ; tk+1); u(t) = u(tk)

8k ¸ 0; 8t 2 [tk ; tk+1); F (u(t)) = F (u(t)) = F (u(tk )) = F (u(tk))

8k ¸ 1; x ¢ Â(¡1;tk) © x(tk ¡ 0) ¢ Â[tk;1) 2 f(u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1)) =
= f (u ¢ Â(¡1;tk) © u(tk ¡ 0) ¢ Â[tk;1))

8k ¸ 1; x(tk ¡ 0) = F (u(tk ¡ 0)) = F (u(tk ¡ 0))

are true.

16. Generator function
De¯nition 115 Let © : Bm £ Bn ! Bn; u 2 S(m) and x 2 S(n). We say that
the state x is generated by the (generator) function © and the input (function)
u and that ©; u generate (the state, the trajectory, the path) x if the unbounded
sequence 0 · t0 < t1 < t2 < ::: exists so that we have:

u(t) = u(t0 ¡ 0) ¢ Â(¡1;t0)(t) © u(t0) ¢ Â[t0;t1)(t) © u(t1) ¢ Â[t1;t2)(t) © ::: (23)

x(t) = x(t0 ¡ 0) ¢ Â(¡1;t0)(t) © x(t0) ¢ Â[t0;t1)(t) © x(t1) ¢ Â[t1 ;t2)(t) © ::: (24)

8k 2 N; 8i 2 f1; :::; ng; (xi(tk+1) = xi(tk ) or xi(tk+1) = ©i(u(tk ); x(tk)))
(25)

fiji 2 f1; :::; ng; 9k 2 N; 9a 2 B; a = xi(tk) = xi(tk+1) = ::: and

and a = ©i(u(tk ); x(tk)) = ©i(u(tk+1); x(tk+1)) = :::g = ; (26)
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Remark 116 We interpret De¯nition 115 that formalizes in this context the
unbounded delay model from the asynchronous circuits theory.

a) For any u; x an unbounded sequnce (tk ) like at (23), (24) exists. These
two equations ¯x such a sequence, that becomes the discrete time set.

b) Equations (25), (26) represent a restatement of De¯nition 2.10, items
b); c) from [3] see also paragrapf 7 of that paper, by following an idea of Anatoly
Chebotarev. (25) states that for any (discrete) time moment tk , the new value
of the coordinate xi is equal either with the old one, or with ©i(u(tk); x(tk))
(or with both). At (26) it is stated that any computation of the 'next state'
©i(u(tk ); x(tk )) is eventually made.

c) The common picture of all the trajectories that are generated by © and
u was associated [2] with the propositional branching time temporal logic: when
xi(tk+1) = xi(tk), respectively when xi(tk+1) = ©i(u(tk); x(tk)), the 'proposi-
tion' x runs in two di®erent branches of time.

d) Similarly with what happens at the fundamental mode, see De¯nition 103,
if x is generated by © and u and 0 · t0 < t1 < t2 < ::: is an unbounded sequence
so that (23),...,(26) be true, we can call the sequnce (tk) compatible with (u; x).
Several sequences (tk) exist that are compatible with (u;x), see for example the
proof of Theorem 118.

De¯nition 117 Let the state x generated by © and u. The coordinate i 2
f1; :::; ng and the coordinate function xi are called excited or enabled at the time
instant t if xi(t) 6= ©i(u(t); x(t)) and they are cal led stable, or disabled at the
time instant t if xi(t) = ©i(u(t); x(t)).

If x(t) = ©(u(t);x(t)) i.e. if all the coordinates are stable, we say that the
state x is stable at the time instant t and (u(t); x(t)) is called an equilibrium
point of ©.

Theorem 118 We suppose that x is generated by © and u. If it is stable at
the time instant t0, then 8t ¸ t0; x(t) = x(t0).

Proof. We suppose that some k 2 N exists so that x(tk) = ©(u(tk); x(tk))
(if the previous property is not true, then x(t0) = ©(u(t0); x(t0)) is ful¯lled for
t0 =2 (tk ); we reindex the elements of the set t0 [ (tk) and we get an unbounded
sequence 0 · t

0
0 < t

0
1 < t

0
2 < ::: that makes (23),...,(26) from De¯nition 115 be

ful̄ lled and the property true). We have x(tk ) = x(tk+1) = :::

Notation 119 The set of the states x with x(0 ¡ 0) = x0 that are generated by
© and u is noted with L©(u; x0).

Remark 120 L©(u; x0) may be considered to be a S(m) ! P ¤(S(n)) function,
i.e. an asynchronous system with the initial state x0.

On the other hand, we observe that for any u, some x 2 L©(u; x0) exists so
that

u(t) = u(t0 ¡ 0) ¢ Â(¡1;t0)(t) © u(t0) ¢ Â[t0;t1 )(t) © u(t1) ¢ Â[t1 ;t2)(t) © :::
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x(t) = x(t0 ¡ 0) ¢ Â(¡1;t0)(t) © x(t00) ¢ Â[t00;t10)(t) © ::: © x(tp0
0 ) ¢ Â[tp0

0 ;tp0+1
0 )(t)©

© x(t01) ¢ Â[t01 ;t11)
(t) © ::: © x(tp1

1 ) ¢ Â[tp1
1 ;tp1+1

1 )(t) © :::

where x(t0 ¡ 0) = x(t0) = x0,

t0 = t00 < t10 < ::: < tp0
0 < tp0+1

0 = t1 = t01 < t11 < ::: < tp1
1 < tp1+1

1 = t2 = t02 < :::

p0; p1;p2; ::: 2 N and

x(tj+1
k ) = ©(u(tk);x(tj

k )); j = 0; pk ;k 2 N

It is interesting the situation when any x 2 L©(u; x0) is of this form and the
propositional branching time temporal logic becomes propositional linear time
temporal logic.

De¯nition 121 We say that the system f is generated by the (generator) func-
tion © if

8u; f (u) =
[

x02Á(u)

L©(u; x0)

Example 122 In the next four examples m = n = 1, © : B £B ! B;B £B 3
( ;̧ ¹) 7¡! ©(¸; ¹) 2 B and x0 is the initial state.

a) ©(¸; ¹) = x1; x1 2 B (the constant function)

L© (u; x0) = fxj9t0 ¸ 0; x(t) = x0 ¢ Â(¡1;t0)(t) © x1 ¢ Â[t0;1)(t)g

see also Theorem 123.
b) ©(¸; ¹) = ¸ (the projection on the ¯rst coordinate)

L©(u; x0) = fxj the unbounded sequence 0 · t0 < t1 < t2 < ::: exists so that

x(t) = x0 ¢ Â(¡1;t0)(t) © u(t0) ¢ Â[t0;t1)(t) © u(t1) ¢ Â[t1;t2 )(t) © :::g

Thus if 0 · t
0
0 < t

0
1 < t

0
2 < ::: is an unbounded sequence satisfying

u(t) = u(t0
0 ¡ 0) ¢ Â(¡1;t0

0)
(t) © u(t0

0) ¢ Â[t0
0;t0

1 )(t) © u(t0
1) ¢ Â[t0

1 ;t0
2)

(t) © :::

and 0 · t0 < t1 < t2 < ::: is a subsequence of (t0
k ), then the state x 2 L©(u; x0)

reproduces some of the successive values of u (in¯nitely many values). We
remark that if lim

t!1
u(t) exists, then lim

t!1
x(t) exists and lim

t!1
u(t) = lim

t!1
x(t).

c) ©(¸; ¹) = ¹ (the projection on the second coordinate)

L©(u; x0) = fx0g

d) ©(¸; ¹) = ¸ ¢ ¹

L©(u; x0) = fxj the unbounded sequence 0 · t0 < t1 < t2 < ::: exists so that

x(t) = x0 ¢ Â(¡1;t0)(t) © x0 ¢ u(t0) ¢ Â[t0;t1)(t) © x0 ¢ u(t0) ¢ u(t1) ¢ Â[t1 ;t2)(t) © :::g
Like at b), u(t0); u(t1); u(t2); ::: are some of the successive values talen by u.
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Theorem 123 Let the function © and the initial state x0. If 9x1; © = x1 (the
constant function) then

L©(u;x0) = fxj8i 2 f1; :::; ng; 9ti ¸ 0; xi(t) = x0
i ¢ Â(¡1;ti)(t) © x1

i ¢ Â[ti;1)(t)g
Proof. In De¯nition 115, (25) shows for any i that xi may switch from x0

i
to x1

i and (26) shows that if x0
i 6= x1

i then some ti ¸ 0 exists so that xi switches
at ti from x0

i to x1
i .

Corollary 124 If f is generated by © = x1 then

8u; 8x 2 f (u); 9x0 2 Á(u); 8i 2 f1; :::;ng; 9ti ¸ 0; xi(t) = x0
i ¢Â(¡1;ti)(t)©x1

i ¢Â[ti ;1)(t)

Theorem 125 Let f; ©; x0 and we suppose that

8u; f (u) = L© (u; x0)

a) If ¡ : Bm £ Bn ! Bn satis¯es 8(¸1; :::; ¸m ) 2 Bm; 8(¹1; :::; ¹n) 2 Bn;

¡(¸1; :::; ¸m; ¹1; :::; ¹n) = ©(¸1; :::; ¸m; ¹1; :::; ¹n)

then
8u; f (u) = L¡(u;x0)

b) If ¡ : Bm+1 £ Bn ! Bn satis¯es 8(¸1; :::; ¸m+1) 2 Bm+1; 8(¹1; :::; ¹n) 2
Bn ;

¡(¸1; :::; ¸m+1; ¹1; :::; ¹n) = ©(¸1; :::; ¸m; ¹1; :::; ¹n)

then

8(u1; :::;um+1) 2 S(m+1); f (m+1)(u1; :::; um+1) = L¡(u1; :::; um+1; x0)

c) If ¡ : Bm £ Bn ! Bn satis¯es for i; j 2 f1; :::;mg; i 6= j: 8(¸1; :::; ¸m ) 2
Bm ;8(¹1; :::; ¹n) 2 Bn ;

¡(¸1; :::; ¸i
i
; :::; ¸j

j
; :::; ¸m; ¹1; :::; ¹n) = ©(¸1; :::; ¸i

i
; :::; ¸i

j
; :::; ¸m; ¹1; :::; ¹n)

then

8(u1; :::; um) 2 S(m); fi!j (u1; :::; um) = L¡(u1; :::; um ;x0)

d) We suppose that © satis¯es for some i 2 f1; :::; mg : 8(¸1; :::; ¸m) 2
Bm ;8(¹1; :::; ¹n) 2 Bn ;

©(¸1; :::; 0
i
; :::; ¸m; ¹1; :::; ¹n) = ©(¸1; :::; 1

i
; :::; ¸m; ¹1; :::;¹n )

Then fbui has sense and if ¡ : Bm¡1 £ Bn ! Bn ful¯lls the condition
8(¸1; :::; b̧i ; :::; ¸m ) 2 Bm¡1; 8(¹1; :::; ¹n ) 2 Bn;

¡(¸1; :::; b̧i ; :::; ¸m; ¹1; :::; ¹n) = ©(¸1; :::;0
i
; :::; ¸m; ¹1; :::; ¹n)

we have

8(u1; :::; bui ; :::;um) 2 S(m¡1); fbui(u1; :::; bui ; :::; um) = L¡(u1; :::; bui; :::; um ;x0)
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Proof. At a), if the equations (23),...,(26) from De¯nition 115 are ful¯lled
by u; x; © then they are ful̄ lled by u; x; ¡ etc.

Remark 126 A series of corollaries of Theorem 125 refers to the general case,
when f is generated by ©, but it is not initialized. Another series of corollaries
of Theorem 125 follows from the supposition that © satis¯es

8(¸1; :::;¸m) 2 Bm; 8(¹1; :::; ¹n) 2 Bn ; ©(¸1; :::; ¸m; ¹1; :::; ¹n) = ©(¸1; :::; ¸m; ¹1; :::; ¹n)

at a), (some examples of such functions for m = 1; n = 2 are given by (¹2; ¸ ¢
¹1 ©¸ ¢¹2©¸©¹1); (¹2 ©1; ¸©¹2©1); respectively (¸©¹1; ¸ ¢¹1©¸ ¢¹2 ©¹1)
) and

8(¸1; :::;¸m) 2 Bm; 8(¹1; :::; ¹n) 2 Bn ; ©(¸1; :::; ¸i
i
; :::; ¸j

j
; :::; ¸m; ¹1; :::; ¹n) =

©(¸1; :::; ¸j
i

; :::; ¸i
j
; :::; ¸m; ¹1; :::; ¹n)

respectively
8(¸1; :::;¸m) 2 Bm; 8(¹1; :::; ¹n) 2 Bn; ©(¸1; :::; i̧

i
; :::; 0

j
; :::; ¸m; ¹1; :::; ¹n) =

©(¸1; :::; i̧
i
; :::; 1

j
; :::; ¸m; ¹1; :::; ¹n)

at c).
On the other hand systems exist that are not generated by any function, for

example those from Example 3 (1),(3),(4) that are characterized by the param-
eters d ¸ 0; ±r ¸ 0; ±f ¸ 0 are in this situation.

The problem of the generator functions leaves open a lot of questions, from
the generation of the intersection and the reunion of the systems, to the connec-
tions with other topics from our work, such as the parallel connection and the
serial connection, the symmetry in both variants and the stability.

Appendix. Details related with Remark 10

With u1 2 S(m1 ); :::; up 2 S(mp) we form the functions (u1; :::; up) : Rp !
Bm1 £ ::: £ Bmp ;

8(t1; :::; tp ) 2 Rp ; (u1; :::; up)(t1; :::; tp) = (u1(t1); :::; up(tp))

(u1; :::; up) 2 S(m1) £ ::: £S(mp) and respectively u1 | ::: |up : R ! Bm1+:::+mp;

8t 2 R; (u1 | ::: | up)(t) = (u1
1(t); :::; u

1
m1(t); :::; u

p
1(t); :::; u

p
mp (t))

u1 | ::: | up 2 S(m1+:::+mp): A bijection ¼ : S(m1) £ ::: £ S(mp) ! S(m1+:: :+mp)

exists,

8(u1; :::; up) 2 S(m1) £ ::: £ S(mp); ¼(u1; :::; up) = u1 | ::: | up

allowing us to identify S(m1 ) £ ::: £ S(mp) with S(m1+: ::+mp).
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We form two sets with X1 2 P ¤(S(n1)); :::; Xp 2 P ¤(S(np)): (X1; :::; Xp) 2
P ¤(S(n1))£ :::£P ¤(S(np)) and respectively X1| :::|Xp 2 P ¤(S(np+:::+np)) that
is de¯ned this way

X1 | ::: | Xp = fx1 | ::: | xpjx1 2 X1; :::; xp 2 Xpg

We have a bijection ¦ : P ¤(S(n1 )) £ ::: £ P ¤(S(np)) ! P ¤(S(np+:::+np));

8(X1; :::; Xp) 2 P ¤(S(n1)) £ ::: £ P ¤(S(np)); ¦(X1; :::; Xp) = X1 | ::: | Xp

that allows us to identify the sets P ¤(S(n1))£:::£P ¤(S(np)) and P ¤(S(np+:::+np)):
With the functions f i : S(mi) ! P ¤(S(ni )); i = 1; p we form two functions

(f1; :::; f p) : S(m1) £ ::: £ S(mp) ! P ¤(S(n1 )) £ ::: £ P ¤(S(np));

8(u1; :::; up) 2 S(m1 ) £ ::: £ S(mp); (f 1; :::; f p)(u1; :::;up) = (f 1(u1); :::; f p(up))

and respectively f 1 | ::: | f p : S(m1+:::+mp) ! P ¤(S(n1+:::+np));

8(u1 | ::: | up) 2 S(m1+ :::+mp); (f 1 | ::: | f p)(u1 | ::: | up) = f 1(u1) | ::: | f p (up)

The commutativity of the diagram

S(m1) £ ::: £ S(mp) (f 1; :::; f p)¡¡¡¡¡¡¡¡! P ¤(S(n1)) £ ::: £ P ¤(S(np))
¼ # # ¦

S(m1+: ::+mp) f 1 | ::: | f p
¡¡¡¡¡¡¡¡! P ¤(S(n1+:: :+np))

makes us identify the functions (f 1; :::; f p) and f 1 | ::: | f p.
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