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1. Introduction

The asynchronous automata are the models of the asynchronous circuits. A safety
property of such automata states that some bad thing never happens, by ‘bad thing’ being
understood loosing all the information on the behavior of the circuits due to their non-
determinism. This property is also considered to be of determinism, since it means the
disappearance, in a certain sense, of the uncertainties that characterize the asynchronous
citcuits.

The safety properties that we shall refer to in this paper are:

- delay-insensitivity and the technical condition of good running: the existence of
certain transitions does not depend on the values of the delays of the circuits that are unknown

- hazard-freedom: delay-insensitivity + the request of monotonous transitions: non
monotonous transitions create unpredictable behavior of the circuits

- speed-independence: hazard-freedom under the unbounded gate delay model. Some
authors ask imprecisely that the delays after forks be less than the gate delays. Other authors
make in this definition the request (of delay-insensitivity) that a unique final class exists,
given by the equivalence: two states are equivalent if they are reachable from each other. In
the present paper, speed-independence coincides with hazard-freedom

- semi-modularity: if two coordinates are enabled and one switches, the other one is
not disabled; this property may be loosened to weak semi-modularity, where for any
trajectory (called path here) and any state of the trajectory, the generator function eventually
computes coordinatewise the next state.

Most of these notions are well known from the literature, where they are presented
informally. Our purpose is to state them by making use of aformalism for the asynchronous
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automata suggested by a series of papers that Anatoly Chebotarev has published in the 70's
and the 80's. Some differences of taxonomy exist relative to these papers.
The assumptions made on the delays of the asynchronous circuits are the following:
Assumption 1. The delays are concentrated in gates and wires.
The wires can be explicitly introduced in the description of the circuits as identity elements.
Assumption 2. The delays are unbounded.
No lower or upper bounds for the delays are indicated, the only request of this nature is that
they be positive. Thisisa mathematical simplification.
Assumption 3. The delays are not constant.
They are functions varying with temperature, sense of the switch (low-high, respectively
high-low), technology and time.
Assumption 4. The delays are unknown.
In fact during the run of the automaton, as a consequence of assumptions 2,...,4 any
delay may be considered to be a sequence of arbitrary positive numbers.
We are grateful to Dr. Anatoly Chebotarev for the great help that he has given during
the realization of thiswork.

2. The Autonomous M odel
2.1 Definition B, ={0,1} isthe binary Boole algebra, endowed with the order 0£1 and the
discrete topology (where the open sets are all the subsets of B> ).
2.2 Definition The binary sequence ag, ay,..., a ,... i1Smonotonous, if it satisfies either of
kEK'P ay £ ay (increasing monotonous), respectively K£k'P ay ® a,: (decreasing
monotonous) for all k,k'3 0.

The same property takes place for ag,ay,...,a afinite family.

2.3 Definition The binary sequence ag, &y ,..., 8 ,... iSconvergent if it becomes constant

starting with a certain rank:

$ lim a1 By, $NT N," pl N,p3 NP a, = lim a
K® ¥ K®¥

The number lim ay isthelimit of ag,ay,...,8,... When k tendsto infinite.
k® ¥

24 Remark lim a, isunique because ag,ay,..., 8y ,... arethevaluesof afunction N ® B,.
k® ¥

2.5 Remark The monotonous sequences are convergent.

2.6 Definition The monotony, the convergence and the limit of the Bg -valued sequences are
defined coordinatewise from Definition 2.2 and Definition 2.3. We have from Definition 2.2

the notion of monotony induced coordinatewise for the Bg -valued finite families too.

2.7 Definition The vector wi Bj iscalled state.

2.8 Definition The function g: BS ® BS iscalled vector field, or generator function.

2.9 Definition The coordinate i (or the coordinate function w; ), where i1 {1...,n} isexcited
or enabled in the state w if w; * g;(w) anditis stable or disabled otherwise.

2.10 Definition If w=g(w), i.e. if al the coordinates are stable, then w isa stable state, or a
point of equilibrium of the vector field g.
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2.11 Definition The binary relation m on BY is defined by
wmweo {i[w =g (W} {i|w =w)
If wmw', wesay that w precedes w' and that w' follows w.
2.12 Remark &) m isreflexive
b) wm g(w)
c) If w isastable state, then wmwp w=w".

dwmwUw *w b wt g(w

2.13 Definition The reachability relation M is by definition the transitive closure of m:
wMw© $wh,... $w wmw U... 0w mw
If wMw', we say that W' isreachable from w.

2.14 Definition If wMw', the couple (w,w') , usually noted w® w' iscalled transition, or
transfer of w in w'. Wesay that g transfers w in w'.
2.15 Notation
M (w) ={w|wMw'}

isthe set of the statesthat are reachable from w.
2.16 Notation

M "1 (W) ={w|w M}
isthe set of the states from which w is reachable.
2.17 Remark Thetransfersthat g makes are called in the literature non-deterministic,
meaning vaguely that, in general, there exist several w't w with wmw'. In the deterministic
situation when a unique such w' exists, w and g(w) =w' differ on exactly one coordinate.

On the other hand if g(w) =w, then thetrivial transition w® w is considered to be
deterministic.

2.18 Remark If w isapoint of equilibrium of g, then from Remark 2.12 c) we have
M (w) ={w}

2.19 Definition The sequence | with theterms wKT M (w),kT N isapath (or atrajectory)
with the originin w if the next conditions are fulfilled:

a) wl =w

b) womw! U... 0wk ImwKk 0.,

o {i|$al B,,$k2 0a=w=w*t=_Ua=gWwW)=gwhH=1=£
2.20 Notation L(w) ={l |l isapath with theoriginin w}

2.21 Remark a) M (w) ={w* [IT L(w),kT N}
by {(w,w)[w,wT Mw) Uwmw}={w<, WD IT Lw), kT N}

2.22 Remark In this formalism, the autonomous asynchronous automata - the taxonomy in
[1], [2], [3] isthat of asynchronous circuits without inputs - are identified with their generator
function g, N isthetime set and therole of w isthat of initial state. The path | with the

originin w represents the successive values that the state of the automaton takes in discrete
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time. The condition 2.19 c) means that no coordinate can be excited (without switching)
forever.

2.23 Example When g defining m,M, M (w),l,L(w) isthe constant function g equal to w,
the new notations are m, M , M (W),r, E(W) . For example
M (W) ={wW]" i1 {L..,n},w =w Ow; =}
On the other hand, E(W) is described by the fact that the paths I are coordinatewise

monotonous and the next inclusion {i |Wik =wi} {i |WikJrl =W} istruefor al kT N .

lim wK exists (see Remark 2.5) and it equals w. In the special case when w=w, I is

k® ¥
constant.

2.24 Proposition The next statements are equivalent for 1T L(w) :

a) | isconvergent

b) SNT N,wN = g(wN)
Proof a)b b) $NT N sothat wN =wN*™ =wN*2 = and we suppose against all reason
that $i,w¥ * g; (wN). 2,19 c) impliesthe existence of k3 1 sothat wN © wN*k,
contradiction with the hypothesis. b) is proved.
b a) {1...n} ={i [w =g (WN)}T {i jwN =wN Y gives wN =wN*T etc.

2.25 Corollary If IT L(w) isconvergent, then lim wX isastable state.

k® ¥
2.26 Corollary If for IT L(w) some stable state wN exists, then | is convergent and
2.27 Corollary "wil M(w),gw)=wpb $IT L(W),klé)n; wk =w

Proof From Remark 2.21 a) and Corollary 2.26.

2.28 Remark The safety properties from the next sections have also the meaning of giving
other points of view on determinism, see Remark 2.17.
3. Delay-I nsensitivity
3.1 Notation If A(w') isaproperty that depends on w', we use the notation
Fw, AW)° $w,AW)U" W', AW )P w=w'
for the existence of aunique W' so that A(w') .

3.2 Theorem The next statements are equivalent:

a) $W," 11 L(w), lim wK =
k® ¥

" 1T L(w), ! isconvergent

%$!W,g(v~v)=wulvl(w)‘| M "1 (W)
i" 1T L(w), | isconvergent
) Lyw,g(®) = WOF M (W)

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com



http://www.fineprint.com

Proof a)p b) Let IT L(w) arbitrary. It isconvergent to alimit W that does not depend on | ,

thusit isunique and it is moreover a stable state, from Corollary 2.25. The terms wX of | run
in all the elementsof M (w), when IT L(w), Remark 2.21 &) and because wKkM W, we infer
that M(wW)1 M~ 1(W).

b)P ¢) M(w)] M'l(vT/) impliess wM W and Wi M (w).

c)b a) Because aunique stable state Wi M (w) existsand all IT L(w) converge, we infer
that they converge to the limit w.

3.3 Definition If one of 3.2 d), b), ¢) istrue, then g is delay-insensitivein w. We say that g

transfers w in w in a delay-insensitive manner and that the transfer w® w is delay-
insensitive. If g isnot delay-insensitivein w, it is called delay-sensitivein w.

3.4 Remark (The classification of the situations of delay-sensitivity) g isdelay-sensitivein
w iff one of the following istrue:

a) $I1 L(w),| isnot convergent

b) " w,g(W)=wUwi M(Ww) P $w',gWw)=wUwi MWw)Uw? w'
These conditions are the negation of 3.2 c), see also 3.1. We get that delay-sensitivity means
the existence of an oscillation (case a)), or of several stable states belonging to M (w) (case
b)), i.e. the existence of several limits to which the paths IT L(w) converge, see Corollary
2.27.

3.5 Notation In the state transition diagrams to follow, we shall underline the excited
coordinates.

3.6 Example g isdelay-sensitivein (0,0) , case 3.4 a):

(wy,wo)
(00 ® (01
(A

3.7 Example g isdelay-sensitivein (0,0) , case 3.4 b):

(wy,w3)
0,0 - ©)1)
Loy
(1,0) (L)

3.8 Example g isdelay-sensitivein (0,0) , case 3.4 a)+b):

(WI’WZ)
0,00 = ©1)

™oy
(1,0) (L1)
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A path | withtheoriginin (0,0) existswith wK = (0,0), wk+l = (1,0),kT N.
3.9 Example g isdelay-insensitivein (0,0) :

(wy,w3)
0.0) —» Q0
oG 1
01 - @b

This example contains no path | with the originin (0,0) so that w2 = (0,0), WASEE (0D,
kT N, dueto condition 2.19 c).

4. Hazar d-Freedom

4.1 Theorem The next properties are equivalent

k

a) $w," 11 L(W),klim w" =w coordinatewise monotonously
®¥

i IT L(w),! iscoordinatewise monotonous

9w, g(W) = WUMW)] M- L)
. i" 1T L(w), 1 is coordinatewise monotonous
L9W,g(W) = WURT M (w)
Proof The proof of Theorem 3.2 is repeated, by replacing ‘1T L(w) is convergent' with
"IT L(w) is coordinatewise monotonous.

4.2 Definition If one of the equivalent conditions 4.1 a), b), ¢) isfulfilled, g is called hazard-
freein w. Weuseto say that g transfers w in w in a hazard-free manner and the transition
w® w iscalled hazard-free. If g isnot hazard-freein w, we say that it is hazardousin w.

4.3 Remark Hazard-freedom is obviously stronger than delay-insensitivity, because it asks
that the delay-insensitive transition w® W be coordinatewise monotonous.

4.4 Remark (The classification of the hazards) g ishazardousin w iff at least one of the
next statementsistrue:

a) $IT L(w),s$il {L...,n},w,o,vvil,w,z,... iS not monotonous

b) " w,g(w)=wUwl M(w)P $w',g(w')=w'UwT M(w)Uw? w'
4.5 Remark We have from Remark 4.4 the possibility that g be delay-insensitive and
hazardousin w: a) istruewith all 1T L(w) convergent to asamelimit W and b) isfalse. This
is the situation from Example 3.9.
4.6 Definition If g isdelay-insensitivein w:

$%," 1T L(w), lim wk =W
k® ¥

and hazardousin w, then the transition w® w is called hazardous.

4.7 Remark Similarly to the conditions 3.2 @) and 4.1 a) where $W meant $w, in the
following statements that are supposed to be valid
$w," wi M (w),g(w)=w
$W, L(w)1 L(w)
W isthe unique state with this property.
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4.8 Remark Any of the next equivalent conditions

a) $W," wi M (w),g(w)=wW

b) $W,L(w)1 L(w)
implies the hazard-freedom of g in w. For example the constant vector fields are hazard-free
in any state.

4.9 Definition If one of 4.8 @), b) istrue, g istrivially hazard-freein w.

4.10 Example g istrivially hazard-freein (0,0) :

(Wl?w2)

0.9) —— (1)

X
4.11 Example g ishazard-freein w:

(W1, Wy, W3)
{0,0,0)

"

(1,0,0) (0.1,0)

/

(1,0.1) {11,0)

e

(L1.1)

5. Semi-Modularity
5.1 Proposition The next statements are equivalent:
a)"w,wi MW),"iT{L...n},w  gy(w)UwmwUw =w b w  g(w')
b) "w,wl M(w),"i,jl {L..,n},
Wt g (W) Uw mwUw; =w; Ow;j * gj(w)Uwj * wj b w * g;(w')
Q" IT Lw),"iT {L...n}," k3 O,wk 2 g; (W) UwK =wk™p wkt 1 g (wk*)
Proof a) P b) We suppose that w',w'l M (w) and i, jl {1...,n} arearbitrary with
Wt gi(w)UwmwOw =w Uw; * gj(w)Uw; * w,
resulting that
Wt g (W) Ow mwOw =w
istrue and from a) we have
) W gi(w)
b) P a) Wesupposethat w,w'l M(w) andil {1...,n} arearbitrary with
Wt g (W) Ow mwOw =w
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If w=w" then wI 1 gj(w") and the proof is complete, so that we may suppose that w'* w".
Because W; :W, some j ! i existswith le 1 Wj and the definition of m implies
le ! gj(w).Weusethetruth of

wtog(w)Uwmw'Ow =w lej 1 gj(W)Uw'j 1 WJ
and b) gives

wi togi(w')

a) U c) followsfrom Remark 2.21 b).
5.2 Definition g issemi-modular in w if one of 5.1 @), b), c) is satisfied.

5.3 Remark The taxonomy of semi-modularity isrelated to lattice theory. It states that an
excited coordinate remains excited at least until it switches. It also states that if two
coordinates are enabled and one switches, the other oneis not disabled.

5.4 Example g issemi-modular in (0,0) :

(W1,W2)
0,00 == (0.1)
N %N
1,0) == @D

5.5 Definition g isweakly semi-modular in w if:

17 L(w)," i1 {L....n}," k3 0,8k k,wX = gj (wX)
5.6 Remark The weak semi-modularity of g in w meansthat for any path with the origin in
w, any coordinate i and any state wk, g eventually computes g (Wk) .
5.7 Proposition If g issemi-modular in w, then it is also weakly semi-modular in w.
Proof Let [T L(w),iT {L...n} and k3 0. If w* = g; (wX), then the proposition is proved
with k'=k so that we shall suppose in the rest of the proof that W|k 1 g (Wk) .
Step 1 Q) wlk 1 w,"+1 ; then the proposition is proved with k'=k +1

b) WX = wk* : then the semi-modularity of g in w shows that

g (WF) = g (W) 1w = i<
and we go to
Step 2 @) w1 wk*2 : then the proposition is proved with k'= k + 2
b) Wi+ = wk*? : then the semi-modularity of g in w shows that
g (WF) = g (W) = gy (WK 2) 1wl = W< = w2
and we go to
Step3 ...

The condition 2.19 c) shows the existence of some p3 0 so that
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Wik+ P Wik+ p+1
and the proposition is proved with k'=k + p+1.
5.8 Example g isdelay-insensitivein (0,0,0) and the transition (0,0,0) ® (1,1,0) is

hazardous
(wl = W2 » W3 )
(1,0,0)
0,00) — = (110
Ny T

01,00 - ©11) - 4L

g isweakly semi-modular in (0,0,0) but it is not semi-modular in (0,0,0) because w is not
excited in (0,1,0).

5.9 Example g ishazard-freein (0,0,0) but not semi-modular in (0,0,0) , because ws is not
excited in (1,0,0)

(Wi, Wwp,W3)
(0,0,0)
(0,1,0) (1,0,0)
T 1L0) l

(1,0.1)

/

(L11)

5.10 Proposition If g istrivially hazard-freein w, then it is semi-modular in w.
Proof Let w, W'l M(w) and il {1...,n} with
wlgw)Uwmw Uw =w

The hypothesis states that

gi (W) =g (W) =W,
resulting

wi togi(w')

5.11 Proposition If g ishazard-freein w, then it isweakly semi-modular in w.
Proof We suppose against all reason that g is hazard-freein w and it is not weakly semi-
modular in w and let IT L(w),iT {L...,n},k3 0 so that

"ks kwC e g (wh)
resulting

k

n kl3 k,VVIk| :Vvi k

=W gi(w
I'T L(w) existswith
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| }I'VVI p=k+1
implying the existence of k'>k +1 so that
W =
The sequence w,ow,lw,kw,kﬂw,k is not monotonous, contradiction.

6. The Technical Condition of Good Running
6.1 Definition The iteratives of g are the functions g/ : BJ ® BY, j 3 0 defined in the next
manner:
g’(w) =w
g/ (w)=g(g’ (W)

6.2 Theorem The next statements are equivalent:

a)"w,wi Mw),wmw'Uw't g(w)pb g(w)=g(w")

b) We arein one of the next exclusive situations:

b.1) g(w)=w

b.2) $p2 Lg(w)* wUg?(w)? g(w)U...UgPw)* gPtw) UgP(w)=gP*=..
i1 {0, p- B, " wi M(g! (W) UM~ (g " (w) - {g " (w)}, g(w) = g (W)
b.3) g(w)? wUg?(w)? g(w)U...UgP* (w)2 gP(w)U...
JT N wi M(g! (w) UM Hg " w) - {g) (W)} g(w) = g1 H(w)
c) For any I L(w) , the numbers Kkg,kq,Ks,... exist so that
0:k0<k1<k2 <..
w9 =gl w),j1 N
being satisfied one of the next exclusive conditions:
c.1) wko =kl =wk2 =
c.2) $p2 Lwkl 1 wrO Uwk2 1 ke U...OWSP 1 w*P-1 OwP =fPHl =
“§1 {0, p- 39w ) = g Ty == gw I = w4
c.3) wkL 1 wko Uwk2 1wk U... 0w P WP Q..
"o Ki ki+1 i
iT N, gw?)=gw’ 7)=..=g(w
Proof The transitions ij ® ij+1 take place similarly to trivial hazard-freedom in ij ,
as g isconstant on M (g! (w)) UM ~1(g!*(w))- {g/**(w)} whenever these sets are non-
empty, jT N.

6.3 Definition If one of the conditions 6.2 a), b), c) isfulfilled, then g satisfies the technical
condition of good running TCGR in w.
6.4 Remark If g satisfiesTCGR in w then the transitions wkj ® ij+1 are coordinatewise

monotonous, j1 N.

6.5 Example g satisfiesTCGR in (0,0,0) :
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(wl ,Wz >w3)

190 — 1LY - @) - 1o
T Loy L
©00) - ©L0)  ©OL) — (00D -

6.6 Example g satisfiesTCGR in (0,0) :

(wy, W)
00 - (0]
10 ® (1Y

6.7 Remark A specia case of TCGR in w consistsin the situation when " jT N ,gj+1(w)
and g J (w) differ on at most one coordinate, like in the previous example, because the sets

M (g’ (w) UM (g w)) - {g! (W)} contain at most the points { g (W)} . This specia
case has been called by Grigore Maisil in his pioneering works in automata theory the
technical condition of good running from where, by generalization, our taxonomy has
resulted.

This specia caseiscalled in more recent works the single bit change and it is offered
as atype of race-free encoding [5].

6.8 Remark on the pseudo-periodicity of the paths IT L(w) .
a) We suppose that g satisfiesTCGR in w. Then j23 0 and p?3 1 exist so that
g/ (w)=gl*P(w)
because BS isfinite and in the following we fix theleast j, p with this property.
b) Let IT L(w) arbitrary and fixed. The indexes kg,ky,Ks,... are defined like at 6.2 c)

by:
O:k0<k1<k2<...
wkm = gM(w), mi N
¢) The existence of the sets
Ty ={w¥ [k =ko.kj - T
R ={wX k2 kj}
- for which
j=0b T, =&

p=1b R ={w'l}
are true - showsthat | hastwo periods, of transient regime respectively of permanent regime.
d) The equation
A ULV LR Y
showing the pseudo-periodicity of | during the permanent regimeis not generally satisfied.
€) Counterexample g satisfiesTCGR in O:
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05 1

j=0,p=2 and | isthe sequence 0,11,0,0,01111,....
6.9 Proposition If g satisfiesTCGR in w and

$p° 1P (w) =gP (W)
then g isdelay-insensitivein w and

"|TL@w¢g§wk:gp@w

6.10 Proposition The next statements are equivalent:
i g satisfiesTCGRin w

1 .
Tow) =wUg?(w) = g(w)
b) g istrivialy hazard-freein w

6.11 Proposition If g satisfiesTCGR in w, thenit is semi-modular in w.
Proof Let w,w'l M(w) andil {1,...,n} sothat
w g (W) 0w mw' O =w
resulting w't g(w'). TCGR gives g(w') = g(w"') and we infer that
Wt gi(w)
7. The Non-Autonomous Case

7.1 Remark We shall identify the spaces B, ™™ andB} * BJ".

7.2 Definition The vector z=(w,v)T B~ BJ" iscalled extended state, or total state. The

vector w of thefirst n coordinates of z iscalled state and the vector v of thelast m
coordinates of z iscalled input, or control.

7.3 Notation We shall note z'= (W', V'), Z'= (W', V'), Z = (W,V),...

7.4 Definition The function f : B " BJ'® BJ,B) " B)'' (w,v) a f(w,v)T B iscalled

vector field with one parameter, or generator function with one parameter. v isthe
parameter of f .

7.5 Notation Let V1 B2 and we note with £V B,  B)'® B) " B thefunction
V] i f'(W!V)’j :]7]
Wmm=h’ S

ij_n,j =n+ln+m

7.6 Remark From now we shall replace g with f ¥ and we shall make use of the fact that the

last m coordinates of f‘7 are the constant functions.

~ ~ ~- 1 ~ ~
7.7 Notation We notewith m¥Y, M"Y (2), MY "(2),1V,LY(2) the notions resulting from

m, M (w), M '1(W),I,L(W) when g isreplaced by iV,
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7.8 Remark If v=V or if, more general, the vector field g exists so that
"21 MY (2),1V(2) = g(w)
then we get a situation that is equivalent to the autonomous automata and we have
M (w) ={w| 2T M"(2)}

7.9 Definition If the next condition is fulfilled
$w," 1IV1 LY (2), lim wX =W
k® ¥

then Y isdelay-insensitivein z, otherwise £V isdelay-sensitivein z.

7.10 Example flis delay-insensitivein (0,0) :

(w,v)
(1,0) ‘%;»@,1)

7.11 Définition If £V isdelay-insensitivein z and moreover if
f(2)=w

then fV isdelay-insensitivein z in the fundamental mode. We say that £V transfers z in
Z inadelay-insensitive manner and that the transfer z® Z is delay-insensitive in the
fundamental mode.
7.12 Remark If the condition 7.11 of stability in z istrue, then

zm' Zb w=w
i.e. the first non-trivial transition of each path AR (2) takes place on one of the
coordinates of the input.

7.13 Remark Thefact that fV is delay-insensitivein z in the fundamental mode is related

to two conditions of stability, in z andin Z . Thisisarequest of inertial compatibility
between the automaton and its input (= the environment).

7.14 Example (to be compared with 3.9) f Ois delay-insensitivein (0,0,2) inthe
fundamental mode:

(wy, 3,9}
(0,0,1) —» (0,0,0) —» (10,0
N =7

(0,10) — (1L0)

The input is the button that, when pushed, makes the automaton start running.
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7.15 Definition If Y isdelay-insensitivein z and if
IV L‘7(z)," il {],...,n},wio,vvil,wiz,... iS monotonous
then fV ishazard-freein z. If moreover
a) $W," z1 MY (2),f(2) =W, then f" istrivially hazard-freein z
b) f(z) =w, then £V ishazard-freein z in the fundamental mode.

7.16 Remark In the hypothesis that £V istrivially hazard-freein z in the fundamental
mode, we have

"zl MY(2), f(Z)=w
V1 UV (2)," k3 0,251 X p K1kl

7.17 Examples f1 ishazard-freein (0,0,0), non-trivialy and not in the fundamental mode at
a); flistrivialy hazard-freein (0,0) but not in the fundamental mode at b); 1 isnon-

trivially hazard-freein (0,0) in the fundamental mode at c); and fl istrivially hazard-freein
(0,0) inthe fundamental mode at d).

(W1, Wp,v) (w,v)
(0,0,0) (0,0)
100 1 @©on (1,6"')/ \ \?9,1)
IR ST
\’
(111)
a) b)
(W,v)
(0,0) (W,v)
B (0,0
0 B
B (0D
1D
c) d)

7.18 Definition If f‘7 fulfills the condition

“2,2T MY (@2, i1 {Loan} W 2 f(Z)Uzm” 20w =w b w * f(2")
thenitis semi-modular in z. If, moreover, f(z) =w istrue, then we say that f‘7 IS semi-
modular in z inthe fundamental mode.

7.19 Examples f1 is semi-modular in (0,0) but not in the fundamental mode at a):
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(w,v) {w, )

©,0) ©,0)
A
(1,9)“—1%(9,1) v
THap Y 0 S (ML)
a) b)

and f? issemi-modular in (0,0) in the fundamental mode at b).

7.20 Definition fV isweakly semi-modular in z if

V1 (@2, i1 {L...n}," k3 0,8K'2 k,wK = £, ()
By supposing moreover that f (z) =w is satisfied, we say that £V isweakly semi-modular in
z in the fundamental mode.

7.21 Example 5.8 gives the next example, where fl isweakly semi-modular in (0,0,0,0) in
the fundamental mode, but it is not semi-modular in (0,0,0,0) :

(W1, W2, W3,V)
(1,0,0.1)
(0,00,0) — (0,001) (LLOL)
1 T
©LOD — (©LL) — @LLD)

7.22 Definition If f fulfills

“2,21 MY (2),zm" 20wt f(Z)P f(2)=f(2")
or any of the equivalent conditions derived from 6.2 then £V satisfies the technical condition
of good running TCGR in z. If moreover f(z) =w, then fV satisfiesTCGR in z inthe
fundamental mode.
7.23 Example We have at 7.19 b) that f1 satisfiess TCGR in (0,0) in the fundamental mode.
Thisisatrivia example, the single bit change case.
8. Conclusions

The asynchronous automata are governed by non-determinism due to the gate and the
wire delays that are unknown. Under certain assumptions, we have defined some situations of
safetiness and determinism that are summarized in the next drawing:
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delay —insensitivity

™ hazard — freedom -
‘trwmf hazard ﬁ"ee

weak semi—modulairity
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