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1. Introduction 
The asynchronous automata are the models of the asynchronous circuits. A safety 

property of such automata states that some bad thing never happens, by ’bad thing… being 
understood loosing all the information on the behavior of the circuits due to their non-
determinism. This property is also considered to be of determinism, since it means the 
disappearance, in a certain sense, of the uncertainties that characterize the asynchronous 
citcuits. 

The safety properties that we shall refer to in this paper are: 
 - delay-insensitivity and the technical condition of good running: the existence of 
certain transitions does not depend on the values of the delays of the circuits that are unknown 

- hazard-freedom: delay-insensitivity + the request of monotonous transitions: non 
monotonous transitions create unpredictable behavior of the circuits 

- speed-independence: hazard-freedom under the unbounded gate delay model. Some 
authors ask imprecisely that the delays after forks be less than the gate delays. Other authors 
make in this definition the request (of delay-insensitivity) that a unique final class exists, 
given by the equivalence: two states are equivalent if they are reachable from each other. In 
the present paper, speed-independence coincides with hazard-freedom 

- semi-modularity: if two coordinates are enabled and one switches, the other one is 
not disabled; this property may be loosened to weak semi-modularity, where for any 
trajectory (called path here) and any state of the trajectory, the generator function eventually 
computes coordinatewise the next state. 
 Most of these notions are well known from the literature, where they are presented 
informally. Our purpose is to state them by making use of a formalism for the asynchronous 
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automata suggested by a series of papers that Anatoly Chebotarev has published in the 70's 
and the 80's. Some differences of taxonomy exist relative to these papers. 
 The assumptions made on the delays of the asynchronous circuits are the following: 
 Assumption 1. The delays are concentrated in gates and wires. 
The wires can be explicitly introduced in the description of the circuits as identity elements. 
 Assumption 2. The delays are unbounded. 
No lower or upper bounds for the delays are indicated, the only request of this nature is that 
they be positive. This is a mathematical simplification. 
 Assumption 3. The delays are not constant. 
They are functions varying with temperature, sense of the switch (low-high, respectively 
high-low), technology and time. 
 Assumption 4. The delays are unknown. 
 In fact during the run of the automaton, as a consequence of assumptions 2,� ,4 any 
delay may be considered to be a sequence of arbitrary positive numbers. 
 We are grateful to Dr. Anatoly Chebotarev for the great help that he has given during 
the realization of this work. 

2. The Autonomous Model 

2.1 Definition }1,0{2 =B is the binary Boole algebra, endowed with the order 10 ≤  and the 
discrete topology (where the open sets are all the subsets of 2B ). 

2.2 Definition The binary sequence ,...,...,, 10 kaaa  is monotonous, if it satisfies either of 

'' kk aakk ≤⇒≤  (increasing monotonous), respectively '' kk aakk ≥⇒≤  (decreasing 
monotonous) for all 0', ≥kk . 
 The same property takes place for kaaa ,...,, 10  a finite family. 

2.3 Definition The binary sequence ,...,...,, 10 kaaa  is convergent if it becomes constant 
starting with a certain rank: 

k
k

pk
k

aaNppNa
∞→∞→

=⇒≥∈∀∈∃∈∃ lim,,,lim 2 NNB  

The number k
k

a
∞→

lim  is the limit of ,...,...,, 10 kaaa  when k  tends to infinite. 

2.4 Remark k
k

a
∞→

lim  is unique because ,...,...,, 10 kaaa  are the values of a function 2BN → . 

2.5 Remark The monotonous sequences are convergent. 

2.6 Definition The monotony, the convergence and the limit of the n
2B -valued sequences are 

defined coordinatewise from Definition 2.2 and Definition 2.3. We have from Definition 2.2 
the notion of monotony induced coordinatewise for the n

2B -valued finite families too. 

2.7 Definition The vector nw 2B∈  is called state. 

2.8 Definition The function nng 22: BB →  is called vector field, or generator function. 

2.9 Definition The coordinate i  (or the coordinate function iw ), where },...,1{ ni ∈  is excited 
or enabled in the state w  if )(wgw ii ≠  and it is stable or disabled otherwise. 

2.10 Definition If )(wgw = , i.e. if all the coordinates are stable, then w  is a stable state, or a 
point of equilibrium of the vector field g . 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


2.11 Definition The binary relation m  on n
2B  is defined by 

}|{)}(|{' '
iiii wwiwgwiww =⊂=≡m  

If 'ww m , we say that w  precedes 'w  and that 'w  follows w . 

2.12 Remark a) m  is reflexive 
 b) )(wgw m  
 c) If w  is a stable state, then '' wwww =⇒m . 

 d) )(' ' wgwwwww iiii ≠⇒≠∧m  

2.13 Definition The reachability relation M  is by definition the transitive closure of m : 
'...,,...,' 11 wwwwwwww kk mmM ∧∧∃∃≡  

If 'wwM , we say that 'w  is reachable from w . 

2.14 Definition If 'wwM , the couple )',( ww , usually noted 'ww →  is called transition, or 
transfer of w  in 'w . We say that g  transfers w  in 'w . 

2.15 Notation 
}'|'{)( wwww MM =  

is the set of the states that are reachable from w . 
2.16 Notation 

}~'|'{)~(1 wwww MM =−  
is the set of the states from which w~  is reachable. 

2.17 Remark The transfers that g  makes are called in the literature non-deterministic, 
meaning vaguely that, in general, there exist several ww ≠'  with 'ww m . In the deterministic 
situation when a unique such 'w  exists, w  and ')( wwg =  differ on exactly one coordinate. 
On the other hand if wwg =)( , then the trivial transition ww →  is considered to be 
deterministic. 

2.18 Remark If w  is a point of equilibrium of g , then from Remark 2.12 c) we have 
}{)( ww =M  

2.19 Definition The sequence l  with the terms NM ∈∈ kwwk ),(  is a path (or a trajectory) 
with the origin in w  if the next conditions are fulfilled: 
 a) ww =0  
 b) ...... 110 ∧∧∧ − kk wwww mm  

c) ∅====∧===≥∃∈∃ ++ ...})()(...,0,|{ 11
2

k
i

k
i

k
i

k
i wgwgawwakai B  

2.20 Notation   llw |{)( =L  is a path with the origin in }w  

2.21 Remark a)   }),(|{)( NLM ∈∈= kwlww k  

 b)  }),(|),{(}"')(",'|)",'{( 1 NLmM ∈∈=∧∈ + kwlwwwwwwwww kk  

2.22 Remark In this formalism, the autonomous asynchronous automata - the taxonomy in 
[1], [2], [3] is that of asynchronous circuits without inputs - are identified with their generator 
function g , N  is the time set and the role of w  is that of initial state. The path l  with the 
origin in w  represents the successive values that the state of the automaton takes in discrete 
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time. The condition 2.19 c) means that no coordinate can be excited (without switching) 
forever. 

2.23 Example When g  defining )(,),(,, wlw LMMm  is the constant function g~  equal to w~ , 
the new notations are )(~,~),(~,~,~ wlw LMMm . For example 

}~},,...,1{|'{)(~ ''
iiii wwwwniww =∨=∈∀=M  

 On the other hand, )(~ wL  is described by the fact that the paths l~  are coordinatewise 

monotonous and the next inclusion }~|{}~|{ 1
i

k
ii

k
i wwiwwi =⊂= +  is true for all N∈k . 

k
k

w
∞→

lim  exists (see Remark 2.5) and it equals w~ . In the special case when ww ~= , l~  is 

constant. 

2.24 Proposition The next statements are equivalent for )(wl L∈ : 
 a) l  is convergent 
 b) )(, NN wgwN =∈∃ N  

Proof a)⇒ b) N∈∃N  so that ...21 === ++ NNN www  and we suppose against all reason 
that )(, N

i
N
i wgwi ≠∃ . 2.19 c) implies the existence of 1≥k  so that kN

i
N
i ww +≠ , 

contradiction with the hypothesis. b) is proved. 
b)⇒ a) }|{)}(|{},...,1{ 1+=⊂== N

i
N
i

N
i

N
i wwiwgwin  gives 1+= NN ww  etc. 

2.25 Corollary If )(wl L∈  is convergent, then k
k

w
∞→

lim  is a stable state. 

2.26 Corollary If for )(wl L∈  some stable state Nw  exists, then l  is convergent and 
Nk

k
ww =

∞→
lim  

2.27 Corollary  'lim),(')'(),(' wwwlwwgww k
k

=∈∃⇒=∈∀
∞→

LM  

Proof From Remark 2.21 a) and Corollary 2.26. 

2.28 Remark The safety properties from the next sections have also the meaning of giving 
other points of view on determinism, see Remark 2.17. 

3. Delay-Insensitivity 
3.1 Notation If )'(wA  is a property that depends on 'w , we use the notation 

"')"(,")'(,')'(,'! wwwAwwAwwAw =⇒∀∧∃≡∃  
for the existence of a unique 'w  so that )'(wA . 

3.2 Theorem The next statements are equivalent: 
 a) wwwlw k

k
~lim),(,~ =∈∀∃

∞→
L  

 b) 






⊂∧=∃

∈∀
− )~()(~)~(,~!

),(
1 wwwwgw

convergentislwl

MM

L
 

 c) 




∈∧=∃
∈∀

)(~~)~(,~!
),(

wwwwgw
convergentislwl

M
L
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Proof a)⇒ b) Let )(wl L∈  arbitrary. It is convergent to a limit w~  that does not depend on l , 

thus it is unique and it is moreover a stable state, from Corollary 2.25. The terms kw  of l  run 
in all the elements of )(wM , when )(wl L∈ , Remark 2.21 a) and because wwk ~M , we infer 

that )~()( 1 ww −⊂ MM . 

b)⇒ c) )~()( 1 ww −⊂ MM  implies ww ~M  and )(~ ww M∈ . 
c) ⇒ a) Because a unique stable state )(~ ww M∈  exists and all )(wl L∈  converge, we infer 
that they converge to the limit w~ . 

3.3 Definition If one of 3.2 a), b), c) is true, then g  is delay-insensitive in w . We say that g  
transfers w  in w~  in a delay-insensitive manner and that the transfer ww ~→  is delay-
insensitive. If g  is not delay-insensitive in w , it is called delay-sensitive in w . 

3.4 Remark (The classification of the situations of delay-sensitivity) g  is delay-sensitive in 
w  iff one of the following is true: 

a) lwl ),(L∈∃  is not convergent 
 b) "')("")"(,")('')'(,' wwwwwwgwwwwwgw ≠∧∈∧=∃⇒∈∧=∀ MM  
These conditions are the negation of 3.2 c), see also 3.1. We get that delay-sensitivity means 
the existence of an oscillation (case a)), or of several stable states belonging to )(wM  (case 
b)), i.e. the existence of several limits to which the paths )(wl L∈  converge, see Corollary 
2.27. 

3.5 Notation In the state transition diagrams to follow, we shall underline the excited 
coordinates. 

3.6 Example g  is delay-sensitive in )0,0( , case 3.4 a): 

)1,1(

)1,0()0,0(
),( 21

↓↑
→

ww

 

3.7 Example g  is delay-sensitive in )0,0( , case 3.4 b): 
 

 

3.8 Example g  is delay-sensitive in )0,0( , case 3.4 a)+b): 
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A path l  with the origin in )0,0(  exists with N∈== + kww kk ),0,1(),0,0( 122 . 

3.9 Example g  is delay-insensitive in )0,0( : 

This example contains no path l  with the origin in )0,0(  so that ),1,0(),0,0( 122 == +kk ww  
N∈k , due to condition 2.19 c). 

4. Hazard-Freedom 
4.1 Theorem The next properties are equivalent 
 a) wwwlw k

k
~lim),(,~ =∈∀∃

∞→
L  coordinatewise monotonously 

 b) 






⊂∧=∃

∈∀
− )~()(~)~(,~!

),(
1 wwwwgw

monotonouswisecoordinateislwl

MM

L
 

 c) 




∈∧=∃
∈∀

)(~~)~(,~!
),(

wwwwgw
monotonouswisecoordinateislwl

M
L

 

Proof The proof of Theorem 3.2 is repeated, by replacing ' )(wl L∈  is convergent' with 
' )(wl L∈  is coordinatewise monotonous'. 

4.2 Definition If one of the equivalent conditions 4.1 a), b), c) is fulfilled, g  is called hazard-
free in w . We use to say that g  transfers w  in w~  in a hazard-free manner and the transition 

ww ~→  is called hazard-free. If g  is not hazard-free in w , we say that it is hazardous in w . 

4.3 Remark Hazard-freedom is obviously stronger than delay-insensitivity, because it asks 
that the delay-insensitive transition ww ~→  be coordinatewise monotonous. 

4.4 Remark (The classification of the hazards) g  is hazardous in w  iff at least one of the 
next statements is true: 
 a) ,...,,},,...,1{),( 210

iii wwwniwl ∈∃∈∃ L  is not monotonous 
 b) "')("")"(,")('')'(,' wwwwwwgwwwwwgw ≠∧∈∧=∃⇒∈∧=∀ MM  

4.5 Remark We have from Remark 4.4 the possibility that g  be delay-insensitive and 
hazardous in w : a) is true with all )(wl L∈  convergent to a same limit w~  and b) is false. This 
is the situation from Example 3.9. 

4.6 Definition If g  is delay-insensitive in w : 

wwwlw k
k

~lim),(,~ =∈∀∃
∞→

L  

and hazardous in w , then the transition ww ~→  is called hazardous. 

4.7 Remark Similarly to the conditions 3.2 a) and 4.1 a) where w~∃  meant w~!∃ , in the 
following statements that are supposed to be valid 

wwgwww ~)'(),(',~ =∈∀∃ M  
,~w∃ )(~)( ww LL ⊂  

w~  is the unique state with this property. 
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4.8 Remark Any of the next equivalent conditions 
a) wwgwww ~)'(),(',~ =∈∀∃ M  
b) )(~)(,~ www LL ⊂∃  

implies the hazard-freedom of g  in w . For example the constant vector fields are hazard-free 
in any state. 

4.9 Definition If one of 4.8 a), b) is true, g  is trivially hazard-free in w . 

4.10 Example g  is trivially hazard-free in )0,0( : 
 

 
4.11 Example g  is hazard-free in w : 
 

 

5. Semi-Modularity 
5.1 Proposition The next statements are equivalent: 

a) )"("')'(},,...,1{),(",' ""'' wgwwwwwwgwniwww iiiiii ≠⇒=∧∧≠∈∀∈∀ mM  
b) },,...,1{,),(",' njiwww ∈∀∈∀ M  

)"()'("')'( ""''"'' wgwwwwgwwwwwwgw iijjjjiiii ≠⇒≠∧≠∧=∧∧≠ m  

c) )()(,0},,...,1{),( 111 +++ ≠⇒=∧≠≥∀∈∀∈∀ k
i

k
i

k
i

k
i

k
i

k
i wgwwwwgwkniwl L  

Proof a) ⇒ b) We suppose that )(",' www M∈  and },...,1{, nji ∈  are arbitrary with 
"''"'' )'("')'( jjjjiiii wwwgwwwwwwgw ≠∧≠∧=∧∧≠ m  

resulting that 
"'' "')'( iiii wwwwwgw =∧∧≠ m  

is true and from a) we have 
)"(" wgw ii ≠  

b) ⇒  a) We suppose that )(",' www M∈  and },...,1{ ni ∈  are arbitrary with  
"'' "')'( iiii wwwwwgw =∧∧≠ m  
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If "' ww =  then )"(" wgw ii ≠  and the proof is complete, so that we may suppose that "' ww ≠ . 

Because "'
ii ww = , some ij ≠  exists with "'

jj ww ≠  and the definition of m  implies 

)'(' wgw jj ≠ . We use the truth of  
"''"'' )'("')'( jjjjiiii wwwgwwwwwwgw ≠∧≠∧=∧∧≠ m  

and b) gives 
)"(" wgw ii ≠  

a) ⇔ c) follows from Remark 2.21 b). 

5.2 Definition g  is semi-modular in w  if one of 5.1 a), b), c) is satisfied. 

5.3 Remark The taxonomy of semi-modularity is related to lattice theory. It states that an 
excited coordinate remains excited at least until it switches. It also states that if two 
coordinates are enabled and one switches, the other one is not disabled. 

5.4 Example g  is semi-modular in )0,0( : 
 

 

5.5 Definition g  is weakly semi-modular in w  if: 

)(,',0},,...,1{),( ' k
i

k
i wgwkkkniwl =≥∃≥∀∈∀∈∀ L  

5.6 Remark The weak semi-modularity of g  in w  means that for any path with the origin in 

w , any coordinate i  and any state gwk ,  eventually computes )( k
i wg . 

5.7 Proposition If g  is semi-modular in w , then it is also weakly semi-modular in w . 

Proof Let },...,1{),( niwl ∈∈ L  and 0≥k . If )( k
i

k
i wgw = , then the proposition is proved 

with kk ='  so that we shall suppose in the rest of the proof that )( k
i

k
i wgw ≠ . 

Step 1  a) 1+≠ k
i

k
i ww  ; then the proposition is proved with 1' += kk  

 b) 1+= k
i

k
i ww  ; then the semi-modularity of g  in w  shows that 

11)()( ++ =≠= k
i

k
i

k
i

k
i wwwgwg  

and we go to 
Step 2 a) 21 ++ ≠ k

i
k
i ww  ; then the proposition is proved with 2' += kk  

 b) 21 ++ = k
i

k
i ww  ; then the semi-modularity of g  in w  shows that 

2121 )()()( ++++ ==≠== k
i

k
i

k
i

k
i

k
i

k
i wwwwgwgwg  

and we go to 
Step 3 �  
 The condition 2.19 c) shows the existence of some 0≥p  so that 
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1+++ ≠ pk
i

pk
i ww  

and the proposition is proved with 1' ++= pkk . 

5.8 Example g  is delay-insensitive in )0,0,0(  and the transition )0,1,1()0,0,0( →  is 
hazardous 

 
g  is weakly semi-modular in )0,0,0(  but it is not semi-modular in )0,0,0(  because 1w  is not 
excited in )0,1,0( . 

5.9 Example g  is hazard-free in )0,0,0(  but not semi-modular in )0,0,0( , because 2w  is not 
excited in )0,0,1(  

5.10 Proposition If g  is trivially hazard-free in w , then it is semi-modular in w . 
Proof Let )(",' www M∈  and },...,1{ ni ∈  with 

"'' "')'( iiii wwwwwgw =∧∧≠ m  
The hypothesis states that 

iii wwgwg ~)"()'( ==  
resulting 

)"(" wgw ii ≠  

5.11 Proposition If g  is hazard-free in w , then it is weakly semi-modular in w . 
Proof We suppose against all reason that g  is hazard-free in w  and it is not weakly semi-
modular in w  and let 0},,...,1{),( ≥∈∈ kniwl L  so that 

)(,' ' k
i

k
i wgwkk ≠≥∀  

resulting 
)(~,' ' k

ii
k
i

k
i wgwwwkk ≠==≥∀  

)(' wl L∈  exists with 
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





+=

=
=

1,

,0,'

kpw

kpw
w

p
i

p
ip

i  

implying the existence of 1' +> kk  so that 

i
k

i ww ~'' =  

The sequence ,...,...,,,...,, ''1''1'0' k
i

k
i

k
iii wwwww +  is not monotonous, contradiction. 

6. The Technical Condition of Good Running 

6.1 Definition The iteratives of g  are the functions 0,: 22 ≥→ jg nnj BB  defined in the next 
manner: 
     wwg =)(0  

        ))(()(1 wggwg jj =+  

6.2 Theorem The next statements are equivalent: 
 a) )"()'()'(""'),(",' wgwgwgwwwwww =⇒≠∧∈∀ mM  
 b) We are in one of the next exclusive situations: 
 b.1) wwg =)(  

 b.2) ...)()()(...)()()(,1 112 ==∧≠∧∧≠∧≠≥∃ +− pppp gwgwgwgwgwgwwgp  

},1,...,0{ −∈∀ pj =−∧∈∀ ++− )'()},({))(())((' 111 wgwgwgwgw jjj MM )(1 wg j+  

 b.3) ...)()(...)()()( 12 ∧≠∧∧≠∧≠ + wgwgwgwgwwg pp  

)()'()},({))(())((', 1111 wgwgwgwgwgwj jjjj +++− =−∧∈∀∈∀ MMN  
 c) For any )(wl L∈ , the numbers ,...,, 210 kkk  exist so that 

...0 210 <<<= kkk  

N∈= jwgw jjk ),(  
being satisfied one of the next exclusive conditions: 
 c.1) ...210 === kkk www  

 c.2) ......,1 111201 ==∧≠∧∧≠∧≠≥∃ +− pkpkpkpkkkkk wwwwwwwwp  
1111 )(...)()(},1,...,0{ +−++

====−∈∀ jkjkjkjk wwgwgwgpj  

 c.3) ...... 11201 ∧≠∧∧≠∧≠ + pkpkkkkk wwwwww  
1111 )(...)()(, +−++

====∈∀ jkjkjkjk wwgwgwgj N  

Proof The transitions 1+→ jkjk ww  take place similarly to trivial hazard-freedom in jkw , 
as g  is constant on )}({))(())(( 111 wgwgwg jjj ++− −∧ MM  whenever these sets are non-
empty, N∈j . 

6.3 Definition If one of the conditions 6.2 a), b), c) is fulfilled, then g  satisfies the technical 
condition of good running TCGR in w . 

6.4 Remark If g  satisfies TCGR in w  then the transitions 1+→ jkjk ww  are coordinatewise 
monotonous, N∈j . 

6.5 Example g  satisfies TCGR in )0,0,0( : 

PDF created with FinePrint pdfFactory trial version http://www.fineprint.com

http://www.fineprint.com


 

 

6.6 Example g  satisfies TCGR in )0,0( : 

)1,1()0,1(

)1,0()0,0(
),( 21

→
↑↓

←
ww

 

6.7 Remark A special case of TCGR in w  consists in the situation when )(, 1 wgj j+∈∀ N  

and )(wg j  differ on at most one coordinate, like in the previous example, because the sets 

)}({))(())(( 111 wgwgwg jjj ++− −∧ MM  contain at most the points )}({ wg j . This special 
case has been called by Grigore Moisil in his pioneering works in automata theory the 
technical condition of good running from where, by generalization, our taxonomy has 
resulted. 
 This special case is called in more recent works the single bit change and it is offered 
as a type of race-free encoding [5]. 

6.8 Remark on the pseudo-periodicity of the paths )(wl L∈ . 
 a) We suppose that g  satisfies TCGR in w . Then 0≥j  and 1≥p  exist so that 

)()( wgwg pjj +=  

because n
2B  is finite and in the following we fix the least pj,  with this property. 

 b) Let )(wl L∈  arbitrary and fixed. The indexes ,...,, 210 kkk  are defined like at 6.2 c) 
by: 

...0 210 <<<= kkk  

N∈= mwgw mmk ),(  
 c) The existence of the sets 

}1,|{ 0 −== j
k

l kkkwT  

}|{ j
k

l kkwP ≥=  
- for which 

∅=⇒= lTj 0  

}{1 jk
l wPp =⇒=  

are true - shows that l  has two periods, of transient regime respectively of permanent regime. 
 d) The equation 

N∈=
+++ mww mpjkmjk ,  

showing the pseudo-periodicity of l  during the permanent regime is not generally satisfied. 
 e) Counterexample g  satisfies TCGR in 0 : 
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2,0 == pj  and l  is the sequence ,...1,1,1,1,0,0,0,1,1,0 . 

6.9 Proposition If g  satisfies TCGR in w  and  

)()(,1 1 wgwgp pp =≥∃ +  
then g  is delay-insensitive in w  and  

)(lim),( wgwwl pk
k

=∈∀
∞→

L  

6.10 Proposition The next statements are equivalent: 

 a) 






=∨= )()()( 2 wgwgwwg

winTCGRsatisfiesg
 

 b) g  is trivially hazard-free in w  

6.11 Proposition If g  satisfies TCGR in w , then it is semi-modular in w . 
Proof Let )(",' www M∈  and },...,1{ ni ∈  so that 

"'' "')'( iiii wwwwwgw =∧∧≠ m  
resulting )'(" wgw ≠ . TCGR gives )"()'( wgwg =  and we infer that 

)"(" wgw ii ≠  

7. The Non-Autonomous Case 

7.1 Remark We shall identify the spaces mn+
2B  and mn

22 BB × . 

7.2 Definition The vector ∈= ),( vwz mn
22 BB ×  is called extended state, or total state. The 

vector w  of the first n  coordinates of z  is called state and the vector v  of the last m  
coordinates of z  is called input, or control. 

7.3 Notation We shall note ),...~,~(~),","("),','(' vwzvwzvwz ===  

7.4 Definition The function nmnnmn vwfvwf 222222 ),(),(,: BBBBBB ∈∋×→× a  is called 
vector field with one parameter, or generator function with one parameter. v  is the 
parameter of f . 

7.5 Notation Let mv 2
~ B∈  and we note with mnmnvf 2222

~
: BBBB ×→×  the function 







++=

=
=

− mnnjv

njvwf
vwf

nj

jv
j

,1,~
,1),,(
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~

 

7.6 Remark From now we shall replace g  with vf
~

and we shall make use of the fact that the 

last m  coordinates of vf
~

 are the constant functions. 

7.7 Notation We note with )(,),(),(,
~~1~~~

zlzz vvvvv LMMm
−

 the notions resulting from 

)(,),(),(, 1 wlww LMMm −  when g  is replaced by vf
~

. 
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7.8 Remark If vv ~=  or if, more general, the vector field g  exists so that 

)'()'(),('
~~

wgzfzz vv =∈∀ M  

then we get a situation that is equivalent to the autonomous automata and we have 
)}('|'{)(

~
zzww vMM ∈=  

7.9 Definition If the next condition is fulfilled 
wwzlw k

k
vv ~lim),(,~ ~~

=∈∀∃
∞→

L  

then vf
~

 is delay-insensitive in z , otherwise vf
~

 is delay-sensitive in z . 

7.10 Example 1f  is delay-insensitive in )0,0( : 

 

7.11 Definition If vf
~

 is delay-insensitive in z  and moreover if 
wzf =)(  

then vf
~

 is delay-insensitive in z  in the fundamental mode. We say that vf
~

 transfers z  in 
z~  in a delay-insensitive manner and that the transfer zz ~→  is delay-insensitive in the 
fundamental mode. 

7.12 Remark If the condition 7.11 of stability in z  is true, then 
''

~
wwzz v =⇒m  

i.e. the first non-trivial transition of each path )(
~~

zl vv L∈  takes place on one of the 
coordinates of the input. 

7.13 Remark The fact that vf
~

 is delay-insensitive in z  in the fundamental mode is related 
to two conditions of stability, in z  and in z~ . This is a request of inertial compatibility 
between the automaton and its input (= the environment). 

7.14 Example (to be compared with 3.9) 0f  is delay-insensitive in )1,0,0(  in the 
fundamental mode: 

 

 

The input is the button that, when pushed, makes the automaton start running. 
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7.15 Definition If vf
~

 is delay-insensitive in z  and if 

,...,,},,...,1{),( 210~~
iii

vv wwwnizl ∈∀∈∀ L  is monotonous 

then vf
~

 is hazard-free in z . If moreover 

a) wzfzzw v ~)'(),(',~ ~
=∈∀∃ M , then vf

~
 is trivially hazard-free in z  

 b) wzf =)( , then vf
~

 is hazard-free in z  in the fundamental mode. 

7.16 Remark In the hypothesis that vf
~

 is trivially hazard-free in z  in the fundamental 
mode, we have 

wzfzMz v =∈∀ )'(),('
~

 
11~~

,0),( ++ ≠⇒≠≥∀∈∀ kkkkvv vvzzkzl L  

7.17 Examples 1f  is hazard-free in )0,0,0( , non-trivially and not in the fundamental mode at 

a); 1f  is trivially hazard-free in )0,0(  but not in the fundamental mode at b); 1f  is non-

trivially hazard-free in )0,0(  in the fundamental mode at c); and 1f  is trivially hazard-free in 
)0,0(  in the fundamental mode at d). 

 

     a)       b) 
 

   

)1,1(

)1,0(

)0,0(
),(

↓

↓

vw

               

)1,0(

)0,0(
),(

↓

vw

 

     c)      d) 
 

7.18 Definition If vf
~

 fulfills the condition 

)"("')'(},,...,1{),(",' ""'~'~
zfwwwzzzfwnizzz iiii

v
ii

v ≠⇒=∧∧≠∈∀∈∀ mM  

then it is semi-modular in z . If, moreover, wzf =)(  is true, then we say that vf
~

 is semi-
modular in z  in the fundamental mode. 

7.19 Examples 1f  is semi-modular in )0,0(  but not in the fundamental mode at a): 
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     a)                                       b) 
and 1f  is semi-modular in )0,0(  in the fundamental mode at b). 

7.20 Definition vf
~

 is weakly semi-modular in z  if 

)(,',0},,...,1{),( '~~ k
i

k
i

vv zfwkkknizl =≥∃≥∀∈∀∈∀ L  

By supposing moreover that wzf =)(  is satisfied, we say that vf
~

 is weakly semi-modular in 
z  in the fundamental mode. 

7.21 Example 5.8 gives the next example, where 1f  is weakly semi-modular in )0,0,0,0(  in 
the fundamental mode, but it is not semi-modular in )0,0,0,0( : 
 

 
7.22 Definition If f  fulfills 

)"()'()'(""'),(",'
~~

zfzfzfwzzzzz vv =⇒≠∧∈∀ mM  

or any of the equivalent conditions derived from 6.2 then vf
~

 satisfies the technical condition 

of good running TCGR in z . If moreover wzf =)( , then vf
~

 satisfies TCGR in z  in the 
fundamental mode. 

7.23 Example We have at 7.19 b) that 1f  satisfies TCGR in )0,0(  in the fundamental mode. 
This is a trivial example, the single bit change case. 

8. Conclusions 
 The asynchronous automata are governed by non-determinism due to the gate and the 
wire delays that are unknown. Under certain assumptions, we have defined some situations of 
safetiness and determinism that are summarized in the next drawing: 
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