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CHAPTER 1

Introduction

1. Historical origins of the theory of asynchronous systems

Professor Grigore Moisil (1906-1973) is one of the computer science founders
and its applications in Romania. He founded the school of the switching theory
and the associated polyvalent logic. Among the members of his school we can
mention the following: George Georgescu, Serban Basarab, Ioana Petrescu (married
Voiculescu), Sergiu Rudeanu, Petre Ivanescu, Gheorghe Nadiu, A. Deleanu, Toma
Gaspar, 1. Muntean, Dragos Vaida, Gh. Ioanin, P. Constantinescu, C. Popovici,
Mariana Coroi-Nedelcu.

Professor Moisil was a brilliant mind who had a profound influence on the
Romanian mathematical thinking by pointing out the necessity of its orientation
towards basic applications. He sensed the huge importance of automatized compu-
tations for humanity as early as the 50’s of the last century but, of course, his ideas
were premature, in a mathematical atmosphere dominated by Bourbaki’s trend
favorable rather to pure theoretical studies than to concrete applications. For in-
stance, in 1965 [21] he introduced in his book a genuine collection of circuits' and
proposed the readers to go on with their investigation. Year by year, together with
his co-workers he studied various aspects of the so-called theoretical informatics,
during seminars and, especially, during the communication sessions of the system
theory group held at the Faculty of Mathematics, Bucharest University. Little by
little, the investigations moved almost completely to the pure theoretical aspects.
Even more, to our knowledge, after the years of 70, the research in the field of
switching theory practically stopped, in spite of the unanimous recognition of its
importance.

The discrete-time modeling of the switching phenomena introduced by Moisil
proved to be a pioneering approach, but also represented a limit of his theory.
Indeed, at that time, the question about the degree in which the discrete time
modeling can approximate the realistic continuous time modeling was left aside.

Subsequently, under the evidence of concrete examples, the mathematical com-
munity was forced to consider more carefully the problem of the relationship be-
tween discrete and continuous-time modeling. Our investigations on switching cir-
cuits were influenced by Moisil’s ideas, although not directly: we learnt about his
research during university studies. By that time, the digital electrical engineering
was rather descriptive than mathematically formalized. Therefore, with a view to
deeply understand the phenomena in switching circuits, we became interested in
their mathematical formalization. A hard work of documentation followed, hoping
to find the mathematics underlying these circuits. To our big surprise, we found

e words: switching circuit, asynchronous circui ircuit, network are considered to
IThe word tch t, asynch cuit, circuit, network considered to be
synonims in this context.

vii
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FIGURE 1. Armature with two contacts

almost nothing in our field of interest, in particular the study of the R — {0,1}
functions. In fact in the late 80’s Professor Sergiu Rudeanu confirmed the lack of
such a study in the mathematics of the world. As a result, by the year 2000 and
even earlier we started with a systematic investigation of the asynchronous circuits
and the construction of the necessary mathematical tools. These led us to two
distinct categories of circuits. Roughly speaking, the first category contains delay
circuits that, connected in series, keep the model and the second category contains
delay circuits that, connected in series, do not keep the model. By identifying the
circuit with its model, the same idea may be expressed as: two delay circuits con-
nected in series form a delay circuit in the first category while in the second, two
delay circuits connected in series do not form a delay circuit.

The splitting in two categories solved the so called paradox we noticed in 2001.
Namely, we found by following the descriptive theories of our former professors two
delay circuits connected in series that were not of the same kind like each of them
taken separately. This was a particular case of circuits of the second category, which
our professors considered to be circuits of the first category.

The solution in solving this paradox was based on the mathematical modeling
by Moisil’s line of thinking that has more or less imposed in Romania. Maybe this
was the real influence that the great mathematician had on us.

2. Moisil legacy

Moisil presents [21], [22] the contacts and the relays in the next manner®. A
contact is a device with two positions: open and closed. Figure 1 shows an arma-
ture with two contacts. The upper contact of the armature is called an opening
contact and the lower contact is called a closing contact. A binary variable is
associated to each contact as follows:

x = 0, if the closing contact is open;

x = 1, if the closing contact is closed;

T =1, if the opening contact is closed;

T = 0, if the opening contact is open.

2By that time, he knew perfectly that the switching circuits may be realized with other means
as well, such as the electronic tubes and the transistors. Such devices are studied in his works.
We chose to present the contacts and the relays because they reproduce the best his mathematical
intentions.
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FIGURE 3. A two terminal network with contacts

In circuits, contacts are symbolized like in Figure 2. We have:

x =0, if in Figure 2 a) the current may not flow through the wire;

x =1, if in Figure 2 a) the current may flow through the wire;

T =0, if in Figure 2 b) the current may not flow through the wire;

T =1, if in Figure 2 b) the current may flow through the wire.

The contacts are connected in series and in parallel like in Figure 3 and they
form a two terminal network, where conductivity is the variable w defined as

w = 0, when the two terminal network does not allow the current to flow by
opening the circuit;

w = 1, when the two terminal network allows the current to flow by closing the
circuit.

Thus w is a function of z,y, 2 :

w=F(z,y,2) =z-yUZ.

We have denoted by —, -, U the usual Boolean laws.

At this moment 7 > 0 is assumed to exist so that in any interval (n7, (n+1)7),
any variable which appears in the network has a constant binary value, denoted by
T, Yn, - where the discrete time n runs over N = {0,1,2,...}.

An (ordinary) relay (Figure 4) is a device consisting of an electromagnet which
attracts an armature with contacts. The variable £, associated to the current in the
relay winding, takes on, in every time interval n, one of the following two values:

&, =0, if during time interval n, no current passes through the relay winding;

¢, = 1, if during time interval n, a current does pass through the relay winding.

The characteristic equation for ordinary relays with ideal contacts is defined
as

Tn+l = gnv
meaning that the relay acts as a delay circuit. More exactly, a relay introduces in
the circuit a delay of 1 time unit.

Figure 5 shows how the relays have been symbolized in a network. The circuit
contains a contact and two relays X,Y and we study it by using 5 variables:

a - associated to the contact;

&, m - associated to the currents in the windings of X,Y’;

x,y - associated to the contacts of X, Y.
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FIGURE 5. A network with two relays

The equations are:

€n:an'y_n,

Np = Qn * T U Yn,

Tp4+l1 = 5717

Yn+1 = Ty

Starting from the 'rest position’

a1 =x_1=y1=&§ =04 =
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where the circuit could have remained indefinitely long, the contact a is operated:
ap = 1. We get the evolution from the next table.

time a = y £ n
-1 0 0 0O O O restposition
0 1 0 0 1 0 operating a leads to operation of X
1 1 1 0 1 1 -contact x isclosed and Y is operated
2 1 1 1 0 1 feed-back action on X
3 1 0 1 0 1 =z opensandy remains closed
4 1 0 1 0 1 stable position
([22], pages 102, 103).

3. About the book

From the very beginning we mention the fact that some of the concepts intro-
duced by us bear the same name with but are different from the concepts used in
the literature, since words like asynchronous, inertia, delay have many meanings.
Moreover, the imprecise non-formalized concepts are associated by us with precise
mathematical definitions. This is why we give a lot of definitions.

The book is intended to construct a mathematical theory of modeling the asyn-
chronous circuits.

The asynchronous systems theory is a branch of the systems theory that has
the purpose of bringing under a common framework the mathematical models of
the asynchronous circuits from the digital electrical engineering. It uses:

- the general concepts of system and pseudo-system providing models for the
functional blocks, where modeling is present at a synthetical level as well as

- the particular concept of delay (stable system with 1-dimensional input and
1-dimensional output), providing models for the gates and wires, where modeling
is present at an analytical level.

Our first interests in asynchronous systems theory date back from 1984.

In trying to produce continuos-time models for switching circuits (some of them
described by discrete time models by Moisil) we needed first to extend the calculus
of the R—valued functions to the calculus of the {0,1}—valued functions.

In this way, in the early 90’s we wrote some works in mathematical analysis
on R — {0,1} functions trying to probe how far the analogies with the R — R
functions can go. Derivatives, as well as several types of integrals can be defined
on R — {0,1} functions, together with convolution products, distributions over
such test functions and, as a conclusion, a mathematical analysis written with these
pseudo-Boolean functions exists, having the only disadvantage of certain trivialities
due to the finiteness of {0,1} compared with R. In this book we limit ourselves to
quote only a few results of our research strictly necessary in this topic.

In our paper [33] we have written the differential equations of a special case
of deterministic inertial asynchronous system. These equations, briefly reproduced
under the form (14.2) in Ch. 13 and describing the so-called paradox in Section 7
of Ch. 13, were inspired by the inertial principle: 'a cause produces effects if and
only if it is persistent’, i.e. if the cause acts continuously d > 0 time units, where
d is a parameter characterizing inertia. In more refined reasonings we have passed
from one to two parameters, such that each of these parameters could be identified
with the parameter d. Usually, these parameters are considered to be equal and
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they are called the transmission delay for transitions and respectively the threshold
for cancellation.

Later on, in 2001, we communicated the title of our contribution to the orga-
nizers of the symposium of mathematics and its applications that the 'Politehnica’
University of Timisoara had. Our paper dealt with the results of our reflections
issued in our attempt to understand the principles of modeling the asynchronous
circuits which brought to our attention some major theoretical shortcomings, that
represented an apparent paradox. Then the title of the paper was changed, hoping
that the new title will draw one’s attention on the aspect that proved to be fun-
damental in solving all the other problems of (logical, detail level) modeling: *how
do we model the most simple asynchronous circuit, namely the delay circuit?’, i.e.
the circuit that implements in digital electrical engineering the computation of the
identity 1{0,13 : {0,1} — {0,1}. An answer that could be given according to the
existing informal literature (presented here in Section 2 of Ch. 10) was: 'we know
some possibilities of modeling a delay circuit. However, as already shown in [33], a
major difficulty appears, the serial connection of the models of two delay circuits is
not the model of a delay circuit’. Something like: a delay’s delay is not a delay, or
perhaps the inertia of inertia is not inertia. A 'paradox’ that could not be ignored.

Solutions were given in our papers [36] and mostly in [40]. We introduced there
the concept of delay (condition) = the mathematical model of the delay circuit and
also the concept of pure = ideal = fixed delay, representing a delay without inertia.
All the delays that are not pure are, by definition, inertial. The ’paradox’ was
solved under the form: the inertial delays connected in series are an inertial delay,
but there are two possibilities:

- by serial connection, the type of inertia is conserved. This is the example of
the bounded delays (two bounded delays connected in series represent a bounded
delay);

- by serial connection, the type of inertia is not conserved. This is the example
of the relatively inertial delays (two relatively inertial delays connected in series do
not represent a relatively inertial delay).

It just happened that in the paper from Timisoara we were situated in the
second case.

Our systemic (logical, detail level, real time) mathematical modeling of the
asynchronous circuits was initiated to some extent at that moment. We need to
choose between several types of delays, insert them, where necessary, before/after
the logical gates and in the wires, then write and solve equations and inequalities
where Boolean functions that are instantaneously (without delays) computed occur,
too. The technique of analysis is rather complicated, but works for small circuits
and if the circuits are not small, then computers should be used in modeling.

The concepts of asynchronous system and asynchronous pseudo-system were
introduced in [37], [39]. We have defined them in the sense that can be referred
to in literature as ’the input-output behavior of a non-initialized, non-deterministic
system’, i.e. as multi-valued functions.

Roughly speaking, the n-dimensional signals are the nice’ R — {0,1}" func-
tions while an (asynchronous) system is a multi-valued function that associates
with an m-dimensional signal, called an (admissible) input, a non-empty set of
n-dimensional signals, called the (possible) states. The input and the states are
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required to have a limit as ¢ — —oco (an initial value). More general than that, an
(asynchronous) pseudo-system possesses:

- signals without limit as ¢t — —oo (without initial values);

- the possibility that to an input v : R — {0,1}"™ there may correspond an
empty set of states, i.e. non-admissible inputs exist.

The naturalness of our concept of pseudo-system consists in the fact that:

- it highlights the duality between the initial values and the final values of the
states. The dual properties of initialization and stability can be defined in this
context, that includes a duality between the initial time and the final time too;

- we must take into account the fact that very simple circuits like the RS latch,
for example, have non-admissible inputs (R - S = 1 is such an input).

A subsidiary aim of the book is to propose open problems, such as: the char-
acterization of the Huffman systems, what is the role of injectivity and surjectivity,
what non-anticipation is - things that seem to be very familiar.

The mathematical facts we presented may also be useful in studying the general
topics of the systems theory. Here are some of them:

- synthesis, model checking (for detecting errors in hardware designs);

- stability;

- feedback, control;

- optimization, optimal control (for example minimal time);

- controllability, accessibility;

- structural decomposability.

It is interesting as well to establish the connections between this theory and
other theories: Petri nets, temporal logic, timed automata.

The book is organized in three parts: the first is dedicated to the general
systems theory, the second to the delay theory and the third to applications. Each
part contains several chapters and the chapters are structured in sections. The
important equations and logical properties are numbered. Thus (4.3) refers to
the third outlined equation or logical property of the fourth section of the current
chapter; when we refer to equation (4.3) from the current chapter we do not need
to indicate the chapter, while when we refer to the same equation from another
chapter, we need to indicate the chapter because it does not follow from this number.
The end of the book has three appendices: one showing some intersections with
temporal logic, an index and a list of notations.

Chapter 2 contains the mathematical framework necessary to model the switch-
ing circuits: spaces of {0, 1}—valued functions and operations on them. In Chapter
3 we introduce a large class of models, namely the pseudo-systems and a few con-
cepts related to them (initial and final states, initial and final time and initial
and final state functions). The most important type of the set of pseudo-systems
consists of the so-called systems. They represent that particular case of non-empty
pseudo-systems characterized by the existence of the initial values of the inputs and
of the states. The systems are treated in Chapter 4 together with some new notions
of further interest. In Chapter 5 particular cases of systems are introduced and their
properties are largely investigated and commented. The next chapter deals with
the accesses and the transfers of the systems. The surjectivity, controllability and
accessibility are the matters of Chapter 7, where comparisons with other variants
existing in the literature are made. Three types of stability of systems are the
subject of Chapter 8. A few examples are included. In Chapter 9, after a brief
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presentation of the known non-formalized definitions of the fundamental mode, the
fundamental transfers are introduced and analyzed. Then, the fundamental mode
is introduced, by using these transfers and its properties are investigated. The
relations between the fundamental mode and accessibility are studied. Part 2 is
dedicated to the delay theory. It starts with the introduction and study of delays,
in Chapter 10. Several types of delays are included. The special class of bounded
delays is investigated in Chapter 11, while in Chapters 12 and 13 the absolutely
inertial delays and the relatively inertial delays are treated. All these three chapters
differ from the previous ones in the sense that they contain a larger comparison of
our notions and the traditional ones. The meaning and the interest for applications
of the presented notions and properties are carefully commented. Part 3 of the
book is dedicated to applications.

We tried to itemize the exposure carefully in definitions, theorems, lemmas,
notations, examples and remarks since this gives good possibilities of understanding
and that of referencing. Their too rich number can be boring to the reader but we
are convinced that it is only in this way that a rigorous treatment was possible.

We have written in full details many dual results. Generally, the proofs are
elementary and some of them have been omitted, others were included for the
reason of making the exposure as readable as possible. The dual proofs have been
omitted.

The book addresses to researchers in computer science, mathematicians and
electrical engineers interested in modeling asynchronous circuits. Its applications
are useful to the electrical engineers.

I am grateful to Professor Adelina Georgescu for accepting to read carefully
my book. Many statements have been rephrased on her suggestions.
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CHAPTER 2

Calculus in B”

Some important concepts and notations on the Boolean and pseudo-Boolean
functions used throughout the book are introduced. Then the calculus for B is
extended to B", where B is the binary Boole algebra. The basic concepts in asyn-
chronous circuit theory are defined with the help of the introduced functions.

1. The binary Boole algebra B

DEFINITION 1. The set B = {0,1} endowed with the discrete topology, with the
order 0 < 1 and with the laws —, U, -, ® defined as in Figure 1 is called the binary
Boole (or Boolean) algebra.

DEFINITION 2. Let J be an arbitrary set and consider the generalized binary
sequence a; € B, j € J. We define the intersections and the unions

0,if 3j € Jya; =0
Mas

1, otherwise
jeJ

ﬂaj = 1,

JED

1,4f 35 GJ,CLJ' =1
Ua =

, 0, otherwise ’
JjeJ

UCLj = 0.

j€D

NoTATION 1. For any A € B™, we use the following notation for the comple-
ment A of A\

X = On ).
NOTATION 2. Let A be an arbitrary non-empty set. Then
P(A)={A4'|A" C A}
is the set of the subsets of A and
P*(A) ={A'|A" C A A" + 0}

- U001 |01 @|0 1
" L 5fo 1 ofo o oo 1
POgltr1]or 1]10

FIGURE 1. The laws of B

3



4 2. CALCULUS IN B"

is the set of the non-empty subsets of A.
In the following A is any of R, B™ and some subspaces of R — B" functions.

DEFINITION 3. The functions F : B™ — B",
B™ > ()\17 -~~7)\m) — (Fl()\lv ooy )\m)a ~-~7Fn()\17 ooy )\m)) eB”

are called Boolean functions.
DEFINITION 4. The dual function F* : B"™ — B" of F is defined by

YA€ B™ F*(\) = F(\).

REMARK 1. The set B is a Boole algebra relative to —,U, - and a field relative
to ®,-. It is not an ordered field, since 1 >0 but 11 < 1H0.

The way that the complement — of B induced a law on B™, we could write
similar notations for U, -, ®. This is not going to be useful for our needs, however.

The dual of — is — itself; the dual of U is - and vice versa. The dual of ® is
the coincidence © :

VA1 €B, VA € B A1 © Ao = A1 D Ao,

2. R — B functions

NoTATION 3. Let A C R be some set. We denote by x4 : R — B the charac-
teristic function of the set A, defined as usual

lLifte A
0, else

DEFINITION 5. Consider the function z : R — B. Its support set is
supp x = {t|t € R,z(t) = 1}.

REMARK 2. The extreme situations represented by xy(t) = 0, xg(t) = 1 are
constant functions and supp 0 = (), supp 1 = R. On the other hand, any function
z : R — B may be written under the form

Vt € R, z(t) = Xoupp 2(t)

and the laws of B induce laws denoted by the same symbols in the set of the R — B
functions: T(t) = z(t), (x Uy)(t) = x(t) Uy(t) ete. There is a bijective function
from the set of the R — B functions to the set of the subsets of R, associating with
x the set supp x; via this bijection, T corresponds to R\supp x, x Uy corresponds
to supp xU supp y, T -y corresponds to supp xO) supp y and x Sy corresponds to
supp rA supp y.

We use the same notation 0,1 for the binary numbers 0,1 € B and for the
constant functions 0,1 : R — B. Similarly, — U, -, ® are used for two or three
different laws each of them. These abusive notations will not create confusion.

NOTATION 4. Let d € R be a real number. By 7@ : R — R we denote the
translation Vt € R, 7(t) =t — d.

DEFINITION 6. The translation of x : R — B with d € R is the composed
function o7l : R — BVt € R, (z 0719 (t) = 2(t — d).
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3. Monotonous functions

DEFINITION 7. The function x : R — B is called (monotonous) increasing
if
vt e R,V € Ryt <t/ = a(t) < z(t')
and (monotonous) decreasing if
vVt e R,V € Rt <t = x(t) > z(t).
The property of x of being either monotonous increasing, or monotonous decreasing
is expressed shortly by saying that © is monotonous.

EXAMPLE 1. The constant functions are monotonous increasing and decreasing
at the same time. They are the only R — B functions with this property.

EXAMPLE 2. The non-constant increasing functions are of the form X4 ),
X(d,00) and the non-constant decreasing functions are of the form X (_ o 4ys X(—oo,d):
where d € R.

REMARK 3. The laws U,- conserve the type of monotony. For example, if
T,y are monotonous increasing, then x Uy and x -y are monotonous increasing.
The function — changes the type of monotony of the non-constant functions (for
example X[q.00) = X(—oco,d))-

If © is monotonous and d' € R is an arbitrary number, then x ot
nous and of the same type as x (example: X(q ) © rd = X[d+d/,00))-

d ;
18 monoto-

4. Consistent sequences of real numbers. Differentiability
DEFINITION 8. We use the notation
Seq = {{t.|t. € R,z € Z}|
e <ty <tp <ty < ...is unbounded from below and from above}.
The elements of§67] are denoted by t,,z € Z, (t,).cz or simply by (t.) and in the
last case the fact that z runs over Z is understood.
THEOREM 1. For any numbers t' < t" and any sequence (t,) € gé?], the set
{z|z € Z,t, € [t',t"]} is finite.

PROOF. The set may have 0 elements, 1 element or more than 1 element. In
the last case, the indices 2’ < 2" exist such that t,,_; <t/ <t <ty <..<
tyr_1 <ty <t <tynyq. Thus {z|z € Z,t, € [t',t"']} is a finite set with 2" — 2/ +1
elements. O

DEFINITION 9. The sequence (t,) € :STc;] is called consistent with the function
z:R—B if
tz + tz—i—l
Vz € Z,YE € (tastan),al(§) = a(Z5 5,

DEFINITION 10. The function x : R — B s called differentiable if there is a
sequence consistent with it, i.e. the sequence (t,) € Seq exists such that

(1) ) = @) X () O AT X (B @

to + 1t

D (to) - Xt} (1) © 2( ) X(to,t2) (1) © ..
NOTATION 5. The set of the differentiable functions is denoted by Dif f.
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ExXAMPLE 3. The constant functions are differentiable and any (t,) € gé?] 18
consistent with them.

ExAMPLE 4. The monotonous function Xjo ) s differentiable and the se-
quences (t,) € Seq consistent with it are those for which there is z such that t, = 0.

EXAMPLE 5. X(o1)up2,3)u... 8 @ differentiable function and the sequences (t.) €
Seq consistent with it are those that include N as a subsequence.

EXAMPLE 6. The function x_ 1k>1) is not differentiable because for any e > 0
the statement

€
V¢ € (*570)796{7;\@1}(5) = X{7i|k21}(*§)
is false.

THEOREM 2. If x € Diff and (t,) is consistent with x, then any (t,) € Seq
containing (t,) as a subsequence is consistent with x.

Proor. Let © € Diff, (t,) € Seq consistent with z and () € Seq with
(t.) C (t)) be arbitrary. Let z € Z be arbitrary too. Then 21 € Z and k > 1 exist
such that t, =¢, , t,4 1 = t;1+k. In addition, we can use the fact that

21

. U i Tt i te 4+ tat1
Wi € {0,k = 11 VE € (£, 14, 1, 4i4), 2(8) = (B2 = o(=—75)
because the intervals (¢, ,t. 1), ..., (t,, 4 1,t., 44) and the points t—ZJL;Zli, o
t, t, . . .
ﬁszlﬂ are contained in the interval (¢,,t,41). O

THEOREM 3. Let x,y € Diff and the sequences (t,).cz consistent with x,
respectively (t.).cz consistent with y. Then the sequence (t,).cz obtained as the
union of the sets (t.).ez, (t,)zcz possibly followed by a reindexing, is consistent
with both x and y.

PROOF. This is a consequence of Theorem 2. O

THEOREM 4. If x,y are differentiable, then T, x Uy, x-y,x Dy are differentiable
too.

PRrROOF. We prove the statement relative to the intersection. Let be z,y €
Diff and (t,) a sequence consistent with = and y (obtained, for example, by the
union of two sequences, the first consistent with x and the second consistent with
y, followed by a possible reindexing). We have

(e )(0) = 2(t) - y(t) =
= @) ) vy @ a(FEY) (LR 0 e

to + 11 to + 11
®x(to) - Y(to) - Xqeoy () © 2( 5 ) - y( 5 )" X(to,t2) () © ..

meaning that (¢j) is consistent with x - y; x - y is differentiable. O

THEOREM 5. If x is differentiable and d € R, then x o 7@ is differentiable too.
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PRrROOF. Let be x € Diff, d€ R and (t,) € Seq consistent with z. We have
(xor)(t) =2(t—d) =

@ a(to1) Xy (= d) ©x(

to+t

D2 (t0) + X1} (t = ) D 2(T5 ) X(agun) (=) @ =
=..®z(t-1+d—d) Xy 4ay (OO

ti+d+to+d
@x(% —d)- X(t_1+d,to+d) t)e

to+d+t1+d
Ealtn +d—d) Xpgprap () @ oI ) (B =

t_1+to
9 ) X(t,l,to)(t —d) @

t o+t
5 ) X, ) () @

= @ (@or)(tly) X 3 (B) @ (wor?)(

to + 1
®(z 0 1) (tg) - X4y (1) ® (w0 7) (2 5 L) Xy (8) @ e

0’71

where the sequence with the general term ¢/, = t, + d, z € Z is strictly increasing,

unbounded from below and from above thus it belongs to ge?;. We have proved that
it is also consistent with x o 7%, thus x o 7% is differentiable. O

5. Left limit and right limit

DEFINITION 11. Let be the function x € Dif f and the sequence (t,) consistent
with it. Thus equation (4.1) holds. The functions

t_1+ 1o

(61 a(t-0)=..e(— )~thﬁﬂ@xﬁm+h

)Xo (0@

t_1+ 1o to +t1
T) 'X[t,l,to)(t) © x( 5 ) 'X[to,tl)(t) ...

are called the left limit and the right limit functions of x.

THEOREM 6. If x is differentiable, then its left and right limit functions are
differentiable. Moreover any sequence (t,) consistent with x is consistent with its
limits too.

(5.2) z(t+0)=..Px(

PROOF. These statements follow by comparing (4.1) with (5.1) and (5.2). O

REMARK 4. From the Definition of x(t — 0) and z(t + 0) we get:
t—

z((t = 0) = 0) = z(t - 0),
z((t = 0) +0) = z(t +0),
z((t+0) = 0) = =(t - 0),

z((t+0)+0)==xz(t+0).
The consequence of this remark is the following. Because with x(t — 0) and x(t +
0) we shall define the semi-derivatives and the derivatives of x, the higher order
semi-derivatives are equal to the first order semi-derivatives and the higher order
derivatives are equal to the first order derivatives.
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THEOREM 7. If x € Diff, then x(t — 0),z(t + 0) satisfy
(5.3) Vi e R,3e > 0,V€ € (t —e,t),2(§) = x(t —0),
(5.4) VteR,3e > 0,VE € (t,t+¢),z(§) =x(t+0).

PROOF. Let (t,) be a sequence consistent with x and consider an arbitrary
t € R. Then arank 2’ € Z of (¢,) exists such that ¢ € (¢,,¢,41]. Any € € (0,¢—t,/)
satisfies (5.3), where z(t — 0) = x(L;z""—l) If t <t.i41,then any e € (0,t,141 — )
satisfies (5.4), where z(t + 0) = x(%) while if ¢ = t,11, then any ¢ €

(0,t, 49 — t,r11) satisfies (5.4), with z(t 4+ 0) = x(L—;Z“‘ﬁ) O

THEOREM 8. Let be z : R — B. If two R — B functions denoted by y(t),y'(t)
exist such that

(5.5) Vi€ R, 3 > 0,Y6 € (t — &, 1), 2(€) = y(t),

(5.6) Vt e R,3e > 0,VE € (t,t+¢),2(€) =9 (t)

hold, then x € Diff. Moreover, y(t),y' (t) like previously are unique and they
coincide with z(t — 0),z(t + 0).

PROOF. We choose an arbitrary ¢y € R.

Case 1. If V¢ < tg, 2(£) = y(tg), then we can choose arbitrarily the unbounded
from below sequence ... < t_g < t_1 < tg.

Case 2. Ft_1 < to,V€ € (t_1,t0),x(§) = y(to) and

x(t_1) #y(to) or It" <t_1,VE € (t',t_1),2(§) = y(t—1) # y(to)

with the following sub-cases.

Case 2.1. If V&€ < t_y,2(§) = y(t_1), then we can choose the unbounded from
below sequence ... < t_3 < t_5 < t_; in an arbitrary manner.

Case 2.2. Ft_g <t_1,Y€ € (t—2,t—1),2(§) =y(t-1) and

z(t_g) #y(t—1) or 3’ <t_9,VE € (' t_2),2(§) = y(t_2) #y(t_1)

In all these steps, the existence of the decreasing sequence ... <t_o <t_; <tg
like above is assured by the property (5.5) and the question is whether this sequence
might be bounded from below and then necessarily convergent towards some t':

W eR,Ve>0,3zeN,0<t_, -t <e.
This would contradict the property (5.6) stated at the point ¢/
3e' >0,V € (¢, ¢ +),2(§) =y'(¢)

because in the interval (¢',¢ + ¢’) we would have infinitely many terms of the
sequence (t_,).en and also both values 0, 1 taken by x. The sequence ... < t_s <
t_1 < tg is unbounded from below and
t_,1+t_. )
— )

In a dual manner, the fact that some unbounded increasing sequence tg < t; <
ty < ... exists with

Vz € N,VE € (ta, tar1),2(€) = ¥/ (L) = (

Vz € N7v€ € (tfzflytfz)wr(g) = y(t*Z) = 1’(

t, + 1,41 )
2



7. CONTINUITY 9

is shown. The sequence (¢, ),cz is consistent with x, so that z is differentiable.
The last statements of the theorem are obvious. O

6. Pulses
DEFINITION 12. We say that x € Diff has a 0-pulse of length § > 0 at the
point t' if
VE e (¢, 1 +6),2(§) =0,
(' —0) =zt +6+0)=1.
We say that x € Dif f has a 1-pulse of length 6 > 0 at the point t' if
VE € (tl7tl + 6)71"(6) = 17
x(t'=0)=z({t'+6+0)=0.
REMARK 5. The values x(t'),z(t' + &) do not occur in Definition 12 and they
will be specified later under certain conditions of continuity.

7. Continuity
THEOREM 9. Let be the differentiable function x : R — B. The following

statements are equivalent:

a) z(t) = z(t — 0); -

b) if the sequence (t,) € Seq is consistent with x, then we have
(71) :c(t) =..D :c(tg) . X(t717t0] (t) ©® x(tl) . X(to,tl](t) D ...
The following statements are also equivalent:

a’) x(t) = z(t + 0); -

b’) for any sequence (t,) € Seq consistent with x, the equation
(7.2) 2(t) = .. B (o) Xitg,) (8) B (1) - Xty ,1) (1) © ..
holds.

PROOF. a) => b) By comparing (4.1) with (5.1) we get

t_1+to to +t1
2 )7x(t1):x( 2 )7

and after introducing these equalities in (4.1) we get (7.1).
b) = a) If x is differentiable and (7.1) is true for a sequence (t,) that is consis-

(7.3) o x(tg) =

tent with it, then (7.3) is true because the points ..., %, @%L, ... are contained
in the intervals ..., (t_1,tp), (to, t1), ... We have
(7.1)
xz(t) =" ... Dx(ty) - X(t,l,to](t) @ x(ty) - X(to,tl](t) D ...
(7.3) t_1+to to + t1 (5.1)
= @ 2(—5)  X(toy.t0) (D) D 2( ) X(to,ta] () ® . =" 2(t = 0)
Second statement can be proved similarly. O

DEFINITION 13. If x € Dif f satisfies one of the conditions a), b) from Theo-
rem 9, then it is called differentiable left continuous. If it satisfies one of the
conditions a’), b’) from Theorem 9, then is called differentiable right continu-
ous.

NOTATION 6. The set of the differentiable left continuous functions is denoted
by S* and the set of the differentiable right continuous functions is denoted by S.
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THEOREM 10. Ifz,y € g*, thenT,x Uy, x-y,c By € S* and if z,y € g, then
T,zUy,z-y,cdy € S.

PROOF. Suppose, for example, that x,y € S and that (t,) € 551 is a sequence
consistent with z and y. We apply (7.2) and we have

(Uy)(t) = z()Uy(t)
= (.. ®a(to)- X[tg,tl)(t) @ x(t) - X[tl,tg)(t) ®...)U
U(e @ Y(to) * Xito,t0) (8) D Y(t1) - X[ty 10y (D) © -2)
= @ (@(t) Uy(to)) - Xiro,t2) (1) & (2(t1) Uy(t1)) - X(ty,15) () S .
= (xzUy)(t+0).
This shows that z Uy € S. (]

THEOREM 11. Let bed € R. If x € g*, then zo7e € S* and for any x € S we
have xoT¢ € S.

PROOF. Taking into account (7.1), the relation z € S* implies for some se-
quence (t,) consistent with x that

(zor®)(t) = ---@(xon)(tf))'X(tgl,tg](t)@(xOTd)(tll)'X(t;),tfl](t)@--- = (zor?)(t-0)

takes place, where the sequence (t)) defined by t), = t, + d, z € Z belongs to 551.
Thus 2 o 7% € S§*. Similarly for the second case. O

8. Initial value and final value. Signals and co-signals

DEFINITION 14. Let be the function x : R — B. Its initial value . lim x(t) €
——00
B and final value tlim x(t) € B are defined by
—00

(8.1) Jto € R,V < to,z(§) = tlir_noox(t),
2) Sty € RVE 2 17,2(6) = Jim a(t),

or, equivalently, by
dtg € va\(—oo,to) = lim z(t),

t——o0
s € R, 211 00) = lim z(2).
We have denoted by T|(— oo ty)s T|[t;,00) the Testrictions of x to the intervals (—o0, to),

[tf,00). The last two equations show that the value of the function is constant. Other
notations for . lim x(t), tlim x(t) are x(—oo +0) and z(co — 0).
——00 —00

If for  the relation (8.1) holds ((8.2) holds), then we say that tiirjloox(t) exists,
or that the initial value of x exists, or that © has an initial value (tlglolo x(t)
exists, or that the final value of x exists, or that x has a final value).

REMARK 6. If any of t_lér_nooac(t), tli)rgox(t) exists, then it is unique which follows

from fact that x is a function.
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THEOREM 12. Presume that the functions x,y : R — B have initial values.
Then T, zUy, x-y, xdy have initial values equal to . lim z(t), . lim x(t)Ut lim y(¢),
——00 ——00 ——00
lim z(¢)- lim y(¢), lim z(¢t)® lim y(t). Similar statements hold for the final
t——o0 t——o0 t——o0 t——o0
values of x and y.

Proor. Obvious. O

THEOREM 13. Suppose that the function x has an initial value (a final value)
and let d € R be arbitrary. Then x o 7% has the same initial value (the same final
value) like x.

PROOF. Relation (8.1) implies
VE < to+d, (x 07 (&) = 2(—00 +0).
Thus the initial value (2 o 7¢)(—oc + 0) exists and it is equal to x(—oc + 0). O

THEOREM 14. Let be the differentiable function x € Diff. The following
statements are equivalent:

a) the initial value of x exists;

b) a sequence (t,) consistent with x exists such that

(83)  2(t) = 2{to = 0) Xty (1) & 2(00) X1, (1) & 2(F) - Xy (D

t1 +t2
Dx(t1) - X3 () & 2( 5 ) X(ty,t2) () © ..
The following statements:
a’) x has a final value;
b’) a sequence (t,) exists that is consistent with x and

t_o+1t_1
(8.4) z(t)=..® x(T) N(tot_ O Bx(t-1) xp_ 1 (O)D
t_1+to
®x( 5 ) X1t (D) ® 2 (t0) - X103 (1) © (t0 + 0) - X(29,00) ()

are equivalent too.

PROOF. a) = b) Let (t,) be a sequence consistent with . The existence
of the initial value of x is related to the fact that some z € Z exists with V¢ <
t., (&) = x(t, — 0). By a possible reindexing of the terms of the sequence (t,) we
obtain the formula (8.3).

b) = a) We have 1tiimoox(t) = z(top — 0). O

EXAMPLE 7. The monotonous functions have initial and final values.
NOTATION 7. Denote by
S* ={z|z € S*, Ja(—o0 + 0)},
S = {z|z € §*,3x(c0 — 0)},
S = {z]z € §,3x(—00 +0)},
Se = {z|z € S,3x(c0 — 0)}

the spaces of functions representing the set of the differentiable left continuous func-
tions with initial values; the differentiable left continuous functions with final values;
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the differentiable right continuous functions with initial values; and the differen-
tiable right continuous functions with final values.

NOTATION 8. We use the notations
Seq = {{tx|tx € R,k € N}tg < t1 < ... is unbounded},

Seq* = {{t_klt—r € R,k € N}|... <t_1 <o is unbounded}.

REMARK 7. If the functions x € Diff are concerned, then the sequences
(t.)zez consistent with x are those from :S?e_(} that make (4.1) true. If the functions
x € Dif f having an initial value are concerned, then the sequences consistent with
x are those from Seq (with the possibility of being extended arbitrarily to sequences
from %), making equation (8.83) true. If the functions x € S are concerned,
then the sequences that are consistent with x are those from Seq again (with the
possibility of being extended arbitrarily to sequences from gé?] ) making the equation

z(t) = z(to — 0) - X(—oo,to)(t) @ z(to) - X[to,tl)(t) ©x(t1) - X[tl,tQ)(t) D ...
true, as followed by comparing (7.2) with (8.3). Similarly for the other cases, of
left continuity and of existence of the final value.

DEFINITION 15. The functions x that belong to either of g, S, S. are called
the signals and the functions x that belong to either of g*,S*,S;* are called the
signals* or the co-signals.

In order to avoid any confusion, we mention each time to what space of func-
tions the signals (or signals*) belong.

THEOREM 15. Let X € {S*,5%,S,S.} and x,y € X. We have T,z Uy, x -y, x D
ye X

Proor. This fact follows from Theorem 10 and Theorem 12. O
THEOREM 16. Letd € R and X € {S*,5%,5,5.}. If vt € X, thenzo7d € X.

PrOOF. The result follows from Theorem 11 and Theorem 13. O

9. Semi-derivatives and derivatives

DEFINITION 16. Let be the differentiable function x € Diff. The following
functions are said: the left semi-derivatives

Dorx(t) = x(t—0)-x(t),

Dioz(t) = z(t—0)-xz(t)
and the right semi-derivatives

Dya(t) = a(t)-x(t+0),

Digz(t) = a(t)-2(t+0)

of x, as well as the left derivative

Dz(t) = z(t — 0) & z(¢)
and the right derivative

D z(t) = z(t +0) ® x(t)
of x.
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REMARK 8. The notation Dgix puts into evidence the time instants when x
switches at the left from 0 to 1 while Digx puts into evidence the time instants when
x switches at the left from 1 to 0. The derivative Dx satisfies the relations

Dx(t) = Dorx(t) U Dygz(t) = x(t — 0) - x(t) Uz(t — 0) - z(t),
supp Dx = supp Dorx U supp Digx

i.e. it puts into evidence the time instants when x has a left discontinuity (x(t—0) #
(t)).

The function x € Dif f is left continuous iff Dz = 0.

Dual statements concerning the right semi-derivatives Dz, Diyx, the right
derivative D*z and the sets supp D§,x, supp Dijyx, supp D*z can be made.

THEOREM 17. For any x € Dif f we have Doz, Doz, D, x, Digz, Dz, D*x €
Diff.

PRrOOF. The functions x(t), z(t—0), z(t — 0), z(t+0), z(t 4 0) are differentiable
and the unions U, the products - and the modulo 2 sums & of differentiable functions
are differentiable. O

THEOREM 18. Let be d € R and x € Dif f. We have Do1(zo79) = (Do12) 074
Similar properties hold for the other semi-derivatives and derivatives too.

Proor. Obvious. O

THEOREM 19. Let be v € Dif f.
a) If (t,) € Seq is a sequence consistent with x, then the relations
a.1) suppDo1x, ..., suppD*x C (t,)
a.it) suppDx U suppD*x C (t,)
hold. -
b) If the sequence (t,) € Seq satisfies any of a.i), a.ii) then itis consistent with

PROOF. a) Let (t,) be consistent with 2 and = be expressed under the form
(4.1), for which we infer

Doa(t) = z(t — 0) - x(t) =
(@ m%) Ny a8 B (2 ;“) Ao (D) )
(@x(%
) Xt () @ 2(t1) - Xy () ) =

t_1+1o to +t1
= © () () Xy () @ 2 () () - X ()
We have obtained that suppDyiz C ().
The manner of proving for the other statements from a.i) is obvious now. More-
over:

) X(t1,t0) () B (t0) * X403 (D)

@x(

suppDx U suppD*x =

. a.i)
Remarks (suppDo1x U suppDiox) U (suppDgyx U suppDigz) C (t,)

and a.ii) follows.
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b) Suppose that (t,) is not consistent with x. This means the existence of some
z € Z and of some t € (t,,t,+1) such that x(t) # z(t — 0) or x(t) # x(t +0). In
both cases, this contradicts one of the inclusions from a.i) and a.ii). 0

THEOREM 20. The function x € Diff has an initial value iff supp Dz and
supp D*x are both bounded from below and it has a final value iff supp Dx and
supp D*x are both bounded from above.

Proor. If Let (t,) € Seq be a sequence consistent with z which satisfies
equation (4.1). From the boundedness from below of suppDzx, suppD*x we infer the
existence of the rank zy € Z with the property that suppDx, suppD*z C [t,,,o0),
meaning that

tz()73 + t2072 t2072 + tzofl

,1’( 2 ):x(t?«’o*Q)vm(f) :x(t?ﬁo*l%
too—2 + 12— ty—1+1
'-'7x(t20—2) = J}(%),J}(t%_l) = JI(%)
ie.
tzof3 + t2072 t2072 + tz()fl tz()fl + tzo

BT ) =t —2) = o(T o) = et ) = ()

In other words V¢ < t,,,2(§) = z(t,, — 0).

Only if The assumption that any of suppDz, suppD*z is unbounded from
below gives the negation of the statement from Theorem 14 b). Thus the equivalent
statement a) of this theorem is false. O

10. Lemmas on differentiable functions

THEOREM 21. Let x € Dif f and the numbers 0 < m < d. The functions

y(t) = N =,
E€[t—d,t—d+m)]
2(t) = U =©

E€[t—d,t—d+m)]
are differentiable and they satisfy the equalities
(10.1) yt=0)=x(t-d=0)- (]  =z().

E€[t—d,t—d+m)

(10.2) y(t+0) = (| «©-x(t—d+m+0),
ge(t—d,t—d+m)

(10.3) 2(t—0)=a(t—d—0)U U =,

c€[t—d,t—d+m)

(10.4) 2(t+0) = U z@uat—d+m+0).
Ee(t—d,t—d+m)]
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ProOOF. If m = 0, then y(t) = 2(t) = x(t — d) is differentiable and we use

Definition 2 ((z(§) =1, J=(§) =0).
g€ £ep
Suppose now that m > 0. Let ¢ be arbitrary and fixed. The left limit of x at

t — d shows the existence of €1 > 0 with
Vee(t—d—ei,t—d),z(§) =zt —d—0)
and the left limit of x at ¢ — d + m shows the existence of €5 > 0 such that
VEe(t—d+m—ea,t—d+m),z(l) =zt —d+m—0).

For any 0 < £ < min{ey, &2, m} we infer

ylt —e) = N w&= (] =©- N x(§) =
E€lt—d—e,t—d+m—e] EE[t—d—e,t—d) Eeft—d,t—d+m—e]
= z(t—d—0)- ﬂ z(§) = z(t—d—0)- ﬂ x(§)-x(t—d+m—0) =
Eelt—d,t—d+m—e] E€ft—d,t—d+m—e]
=a(t—d-0)- N z(§) - N z(§) =
feft—d,t—d+m—e] fe(t—d+m—e,t—d+m)

=z(t—d-0)- m x(&).

ect—d,t—d+m)

Because the value of y(t — ¢) does not depend on ¢, we get y(t —¢) = y(t — 0) and
because t is arbitrary, (10.1) is proved.
The right limit of « at t — d shows the existence of €3 > 0 such that

VEe(t—d,it—d+e3),z(§) =zt —d+0)
and, on the other hand, the right limit of x at ¢ — d + m shows the existence of
€4 > 0 with
VEe(t—d+m,t—d+m+eq),z() =zt —d+m+0).
We take some 0 < ¢’ < min{es, g4, m} such that

y(t+e') = N () = N (&) N () =

E€t—d+e’ t—d+m+e’] Eet—d+e’ t—d+m] E€(t—d+m,t—d+m—+te’]
= m (&) -z(t—d+m+0) =
fe[t—d+e’ , t—d+m]
=a(t—d+0)- N z(€) - x(t—d+m+0)=
Eet—d+e’ t—d+m]

- ﬂ z(§) - ﬂ z(&) - z(t—d+m+0) =

Ee(t—d,t—d+e’) EE[t—dHe’ t—d+m]

= (N =©-ax(t—d+m+0).
Ee(t—d,t—d+m)]
The fact that y(t + &’) does not depend on &’ shows that y(t + ') = y(¢t + 0) and
because t is arbitrary, (10.2) is proved. Therefore, by Theorem 8, y is differentiable.
The proof for z is similar. O
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THEOREM 22. Under the conditions of Theorem 21 and wusing the previous
notations, we have:

(10.5) y(t—0)-y(t)=a(t—d-0)- ] (),

Eet—d,t—d+m)]

(10.6) y(t—0)-y(t) =zt —d—0)- N x©)-x(t—d+m),

c€ft—d,t—d+m)

(10.7) 2(t—0)-2(t) =2(t—d—0) - U  x©-xt—d+m),
Eet—d,t—d+m)

(10.8) 2(t—0)-2(t) =2t —d—0) - U =©.

c€[t—d,t—d+m)

PROOF. The relations (10.5) and (10.7) are proved as follows:

y(t=0)-y(t) = 2(t—-d-0)- N =©- N x©

Eelt—d,t—d+m) E€[t—d,t—d+m)]
= @it-d-ou () =) () «wO=
¢€[t—d,t—d+m) ¢€ft—d,t—d+m)]

= z(t—d-0)- N =©);

c€[t—d,t—d+m)

-0 =at—d-0)u  |J 20 | 9=

feft—d,t—d+m) Eeft—d,t—d+m)
=z(t—d—0)- U =9 U =©uat-d+m)=
Eelt—d,t—d+m) E€[t—d,t—d+m)

a0 wl©)alt—d+m).

c€[t—d,t—d+m)

THEOREM 23. Let X € {S*,5,5%,8%,5,5.}. Ifv € X, theny,z € X.

PROOF. We choose X = S. If m = 0 and y(t) = 2(¢t) = x(¢t — d), then by
Theorem 16, z o 7¢ € S . From this moment on we consider that m > 0.

From Theorem 21 we know that y is differentiable therefore we must show that
it satisfies the equality y(¢t) = y(¢+0) and Eltlimooy(t). Let t be arbitrary and fixed.

The right continuity of x at ¢t — d shows that there is £; > 0 with
VEet—d,t—d+e1),z(8) =x(t—d)
and the right continuity of x at ¢ — d + m shows the existence of e > 0 such that
VEe(t—d+m,t—d+m+er),z(€) =zt —d+m).
Let 0 < € < min{e, g2, m}. We conclude that

y(t+e) = N () = N =©- N () =

€t—d+e,t—d+me] fe[t—d+e,t—d+m)] fe(t—d+m,t—d+m-e]
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= N z(€) -zt —d+m) = N

E€[t—d+e,t—d+m)] E€[t—d+e,t—d+m)]

=a(t—d)- N z(§) =

(€[t—d+e,t—d+m)]

- N =@ N =w0=

Eet—d,t—d+e) €lt—d+e,t—d+m] (e[t—d,t—d+m)]

17

Thus y(t + ) = y(t + 0) = y(t). The function y is right continuous since ¢ is

arbitrary.

Moreover, the property of existence of the initial value is fulfilled since from

VE < tg,x(€§) = x(—00 +0),

we infer

VE<to+d—m, m z(w) = x(—00+0) = y(—o0 + 0).

we[§—d,E—d+m]
We have proved that y € S.
The proof for z is dual.
THEOREM 24. If x € Diff and d > 0, the functions
vty = [ =),
Eet—d,t)
20 = | =
Eet—d,t)

are differentiable and satisfy the relationships

Y(t—0)=zt—d—0)- () =),

Eet—d,t)
Yt+0) = [ (& z(t+0),
£e(t—d,t]
dt-0)=at-d-0)u |J =9,
EEt—d,t)
Z(t+0)= U (&) Uz(t+0).
Ee(t—d,t]

PRrROOF. Is similar to the proof of Theorem 21.

O

REMARK 9. Unlike Theorem 23, where we have proved that the right continuity
of x implies the right continuity of y, in Theorem 24 the right continuity of x does

not imply the right continuity of iy’ because we have

Yt+0) =[] 2@ -2t+00= [ x()#yt)

EE(t—d,t] EE(t—d,t]

and similarly for the other three situations. We conclude that a certain care must

be taken when using the functions y'(t), 2/ (t).
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F1GURE 2. Conventions concerning the drawing of the graphs

11. Conventions about the graphs of the R — B functions

REMARK 10. In order to make easier the understanding of the (in general,
differentiable) R — B functions, we make the following conventions concerning the
drawing of their graph:

a) the two values 0,1 are not written on the vertical axis. They are supposed to
be known, the only necessary convention is that the low value has to be associated
with 0 and the high value to be associated with 1;

b) the 0 value on the horizontal axis is not written. The convention is that 0
represents the intersection of the vertical and the horizontal azis;

¢) we draw vertical lines through these points where the function switches (the
discontinuity points) even if the vertical lines do not belong to the graph;

d) we put bullets on the vertical lines drawn like at c), in this way underlining
the points that actually belong to the graph (the value of the function at the switching
point).

ExXAMPLE 8. The function z(t) = Xx0,1)(t) © X123(t) is differentiable, that is
neither left, nor right continuous. More precisely we have

z(t—0) = X(0,1] (t),
z(t+0) = Xxp),
Dz(t) = X{o,z}(t)7
D z(t) = xq1,2(1)-

In Figure 2 we have drawn the graphs of these functions.

12. R — B"” functions

The way of obtaining from n sequences (tl),...,(t?) € Seq consistent with
Z1,...,Tn € Diff a sequence (t,) consistent with all these functions was already
mentioned, namely by reindexing the set (1) U...U (¢?). Then this sequence is used
to express the validity of equation (4.1) for the function z(t) = (x1(t), ..., z,(t))-
Conversely, the differentiable x : R — B" functions can be defined by the existence
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of a sequence (t,) € Seq such that formula (4.1) holds. In this case, the coordinate
functions w1, ..., x,, are differentiable themselves and the sequence (t,) consistent
with all of them is called consistent with x. The set of the differentiable R — B"
functions is denoted by Dif f (),

Let (t,) € Seq be a sequence consistent with the functions z1,...,z, € Diff.
The equations (5.1), (5.2) that are true for zy,...,2, are true for the function
z(t) = (x1(t), ..., z,(t)) too. Conversely, the left x(t—0) and the right z(¢+0) limits
of 2 € Dif f(") are defined by the validity of the formulae (5.1), (5.2) wherefrom
we infer that

2(t —0) = (21(t = 0), oy 2p(t — 0)),

2(t+0) = (21(t+0), .0 2a(t+0)).

The left and the right continuity of z € Dif f(") consists in the equality x(t) =
x(t — 0) and x(t) = z(t + 0) respectively and this is equivalent to the left and
the right continuity of the coordinate functions. The formulae (7.1), (7.2) are true
when written for x as well as for z1,...,z,, where (t,) € :5?67] is consistent with
all coordinate functions 1, ..., x,. We denote by g*("), S Dif ™ the sets of
differentiable functions that are left continuous and right continuous respectively.

The definition of the initial value . lim z(t) € B" and final value tlim x(t) € B”

of z : R — B" is expressed by the formulae (8.1), (8.2) also while the existence
of the initial/final value of x consists in the existence of the initial/final values of
the coordinate functions. The formulae (8.3), (8.4) are true if z € Diff(™ has an
initial value, respectively a final value (i.e. if z1,...,2, € Diff have initial and
final values respectively). The new notations are:

S*(n) _ {1’|$ c §*<7l),3x(—oo+0)},
S = {z|z € 5™, Iz (00 — 0)},
S0 = {z]z € ™ Jx(—o00 +0)},

S = {afe € 5, 3x(00 — 0)}.

The functions that belong to S, S, S are called the n-dimensional signals
and the functions that belong to S *(n) Ggx(n) g% (™) are called the n-dimensional
co-signals, or signals™.

Even if this fact is possible, we shall not use the vector notation of the semi-
derivatives and derivatives of the differentiable functions x : R — B"™. The semi-
derivatives and the derivatives of the coordinate functions x1, ..., x, will occur oc-
casionally.

Remark that from the definition of T, xUy, -y, Py for the functions z,y : R —
B, the Boolean functions F' : B — B"™ that define, for each u : R — B™, the
function F(u(-)) : R — B", R >t — F(u(t)) € B" bring the space Diff(™
in Dif f(, §*(m) in §*() ete., initial values in initial values (F(tlirgou(t)) =

tlim F(u(t))) and final values in final values.
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13. Cartesian products of functions and spaces of functions

DEFINITION 17. The Cartesian product (the sum-dimension vector func-
tion) of the functions x : R — B" and 2’ : R — B"™ s the function x x 2’ : R —
B" x B",

(x x ) (t) = (x(t), 2/ (1))
Sometimes, instead of x X =, we use the notation (x,z’). It is often convenient to
identify B" x B" with B" and then write
(x x 2" )(t) = (21(t), e, wn(t), 2) (), .oy 20 (1))

DEFINITION 18. Let X C (B")R, X’ ¢ (B")R be two non-empty sets and we

denote (B")R = {x|z : R — B"}. Their Cartesian product is defined as
XxX ={zxa|re Xz eX}
DEFINITION 19. For X, X' like before, the Cartesian product P(X) x P(X')
of P(X) and P(X') is the set
P(X) x P(X') = P(X x X"
and similarly for P*(X) x P*(X').
REMARK 11. In Definitions 17,18, 19 the argument t of the functions of the

product is the same (a unique time azxis and a unique present time exist). We con-
clude, for example, that any x € Dif f(™) is the Cartesian product of its coordinates:

z(t) = (x1(t), ..., xn(t)) = (1 X ... X ) (¢)
and moreover that ) )
Diff™ x Dif ) = Dif fr+n),
P(Diff™) x P(Diff")) = P(Dif f" ).

Relations of the same kind are obtained if we replace Diff(") by its previously
defined subspaces: S*, §+m) gx™ gn) gn) gn),

If in Definition 17 the functions z, ' are constant and equal to u € B™, i/ € B
then the two equations become

px gl = (s '),
[ X% = (g ey fgyy B oo )



CHAPTER 3

Pseudo-systems

The mathematical concepts occurring in the description of the pseudo-systems
are defined in terms of the notions introduced in Ch. 2. The appropriate choice
of the mathematical concepts which must be associated with the signals, pseudo-
systems, initial and final states, initial and final time, initial and final state functions
is carefully motivated.

1. Choosing the right continuity of the signals

At this moment, in principle, we have the following possibilities:

a) to work with differentiable functions x € Dif f (n);

b) from now on to choose the work with left-continuous functions z € 5 or
x belongs to some subspace of :S’v*(”); N

¢) to make the choice of working with right-continuous functions = € S, or
x belongs to some subspace of S,

The possibility a) looks correct, but, maybe, too general. In the differential
equations and inequalities left and right (semi-)derivatives occur such that the study
of the solutions is difficult. Our belief is that the "Dirac impulse’ x4, considered as
the typical example of differentiable function with left and with right discontinuities
does not reflect the properties of the electrical devices that are generally inertial.
This is why we eliminate it from our study. It remains as a subject of reflection
whether our belief is reasonable.

The b) alternative of restricting the functions involved in our theory to the left
continuous ones looks good, in the sense that it corresponds to our aims of being
as simple as possible. For reasons imposed by our previous works, this is not our
option, but the subject of reflection that arised is: could we have studied everything
in this paper based on the left-continuous functions? With what consequences? We
prefer to associate these functions with the systems that run with the time axis
reversed, from the future to the past.

The c) alternative, dual to b) represents our decision for the rest of the book. By
using this restriction, we omit using right (semi-)derivatives, that are null for such
functions, but also the Dirac impulses. The gain in simplicity seems noteworthy
and the loss of generality seems minimal or null.

2. The definition of the pseudo-systems

REMARK 12. The pseudo-systems are multi-valued functions from the set of
differentiable right continuous R — B™ functions called the inputs to (empty or
non-empty) sets of differentiable right continuous R — B™ functions called the
states. Under a very general form they initiate the problem of modeling the asyn-
chronous circuits from the digital electrical engineering and allow us to present the

21
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duality between the initial states and the initial time, on one hand and the final
states and final time, on the other hand.

DEFINITION 20. The functions f : S — P(g(")),m,n > 1 are called the
asynchronous pseudo-systems in the input-output sense, or shortly pseudo-
systems. We say that f represents a pseudo-system under the closed-form.
The elements u € S™ are called the inputs (in the pseudo-system): admissible
if f(u) # 0 and non-admissible if f(u) = 0, while the elements x € f(u) are
called the (possible) states, or (possible) outputs (of the pseudo-system). The
sets S S qre called the input space and the state (the output) space and
m,n are called the dimensions of the input and of the output space. The set
R is the time set.

DEFINITION 21. A pseudo-system under the implicit form consists in
one or several equations and/or inequalities where u is given, t € R is the temporal
variable and x is the indeterminate.

REMARK 13. The pseudo-systems are multi-valued functions (or relations) that
associate with each input u the set of the possible states f(u). The concept originates
in the modeling of the asynchronous circuits.

A non-admissible input, i.e. an input u for which f(u) = 0, is thought of to
be the cause of no effect that can be expressed by f and an admissible input u, for
which f(u) # 0 is considered the cause of several possible effects v € f(u). The
multi-valued character of the cause-effect association is due to statistical fluctuations
in the fabrication process, the variations in the ambiental temperature, the power
supply etc.

Let A\, pu € B. The inequality X\ < i is equivalent to the equality XU p = 1, while
the equality A = p is equivalent to the inequalities A < p,p < X\ (by ’equivalent’
properties we mean that the sets of couples (A, i) satisfying the two properties are
equal). This fact shows us that it is the same thing to indicate the pseudo-systems
under the implicit form as equations or as inequalities.

NOTATION 9. IfVu € :S’v(’”), f(u) has exactly one element, then for the pseudo-
system f we use the same notation f : S™ — S as for the uni-valued functions.

3. Examples

EXAMPLE 9. The null pseudo-system is defined by f : St — P(g(”)),Vu €
g(m),f(u) = 0, i.e. all its inputs are non-admissible. This corresponds to the
situation when f models nothing.

EXAMPLE 10. The total pseudo-system f : S(™) — P(g(")) is defined by Yu €
g(’”), flu) = S™ and has all the inputs admissible. It models all the circuits with
m-dimensional inputs and n-dimensional states and gives no information on these
circuits.

ExampLE 11. The identical pseudo-system I, : Sm) —, gm) g defined by:
Yu € g(m), L (u) = u. It models m wires without inertia and without delays.

EXAMPLE 12. The projection on the j — th coordinate, j € {1,...,m} is the
pseudo-system ; : Sm) S vu € g(m),wj (u) = u;.

EXAMPLE 13. The vector p € B™ defines the constant function p : Sm)
S This is an interesting example of pseudo-system, since it suggests us a circuit
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modeled with ‘stuck-at’ p,; faults, i = 1,n. We have identified the constant p with
the constant function x(t) = p.

EXAMPLE 14. More general than previously, a set A C B™ defines the constant
pseudo-system A : S(™) — P(SM).

EXAMPLE 15. Let be the function F' : B™ — B"™. We define the pseudo-system
£ 8m 8 py vy € S F(u)(t) = F(u(t)). This example makes use of the
fact that for every u € S when t runs over R, then F(u(t)) belongs to S,
The modeled circuit represents the ideal logical gates and, more generally, the ideal
combinational circuits, that work without inertia and without delays.

EXAMPLE 16. Let p be an equivalence relation on S™ and denote by [u], the
equivalence class of u relative to p. We have the pseudo-system f : S™) — P(S(™)

defined by Yu € g(m),f(u) = [u],. Here are some equivalence relations on S(m) .
-upv <= 3Id € R,u=vort%
- upv <= It € R, U|(—cot) = V)(—00,1);
-upy <= Jt € R,anm) = U|[t,00)>
-upv <= Ja > 0,Vt € R, u(t) = v(a-t) (two signals are equivalent if they are
equal irrespective of the time unit);
-upv <= Vj € {1,...,m}, lim N u;(§) = lim N v(&);
b= 0% e(—o0,t) % (—o0t)
—upv <= Vje{l,..,m} lim | u;(§)=lim U v;(§.
%%t 00) 7 %%elt )
In writing the last two definitions we have made use of the fact that for any
u € S™ and any j € {1,...,m}, the functions of t : () wu;j(€), U u;(&)
g€(—o0,t) £€(t,00)
switch at most once from 0 to 1 when t decreases, and from 1 to 0 when t increases
respectively. Thus they are monotonous and the two limits as t — —oo0, and t — oo

respectively exist.

EXAMPLE 17. The pseudo-system f : S — P(g) is defined in the implicit form
by the double inequality

(3.1) N w©<z)< |J ),
Eeft—d,t) Eet—d,t)
where d > 0. When u,x € S, the functions N w@) and U w(f) are just
Eet—d,t) et—d,t)

differentiable, they are not right-continuous (as discussed in Remark 9). This is the
model of a delay circuit, where the delay between u and x is bounded by d.

4. Initial states and final states

REMARK 14. We reveal the following properties of the pseudo-system f:

(4.1) Vu € S Y e f(u),3Iu € B", Iy € R,VE < to, z(t) = p;
(4.2) vu e S0 Ju e B",Va € f(u), I € R,VE < to, z(t) = p;
(4.3) Ju e B, Vu e ST Vx € f(u), 3ty € R, VE < to, 2(t) = p;
(4.4) Yu e ST Vr e f(u),3u € B, 3t; € RVt > ty,x(t) = s

(4.5) Yu e S 3y e B",Vx € f(u),Itr € RVE> ty,a(t) = p;
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(4.6) Ju e B, Yue S Vr e f(u),3t; € RVt >t a(t) = p.

We can see that if f(u) # 0, then 3 in (4.1),...,(4.6) should be interpreted as I p,
the existence of a unique p with that property. B

If (4.1) is true with f non-null, then it defines a partial function S™ — B"
that associates with each x € |J f(u) its initial value p. If (4.2) is true with

ueSm)

f non-null, then it defines a partial function S(m) _ B" that associates with each
admissible input u the common initial value p of all x € f(u). Dually, if f is non-
null and (4.4), (4.5) are true, two partial functions S — B gnd S™ — B" are
defined.

The null pseudo-system f fulfills trivially all properties (4.1),...,(4.6) with ar-
bitrary pn € B™ and to,ty € R.

Remark the dualities between (4.1) and (4.4); (4.2) and (4.5); (4.3) and (4.6)
and the truth of the implications

(4.3) = (4.2) = (4.1),

(4.6) = (4.5) = (4.4).

Remark also that in (4.1),...,(4.3) VYt < to and YVt < to are equivalent and in
(4.4),...,(4.6) Vt >ty and Vt > ty are equivalent. We have adopted Vt < ty and

Yt >ty in order to underline the right continuity of the n—signals v € S,

DEFINITION 22. If f satisfies (4.1), we say that it has initial states. In this
case the vectors p are called (the) initial states (of f), or (the) initial values of
the states (of f).

DEFINITION 23. Suppose that [ satisfies (4.2). In this situation we say that it
has race-free initial states. Moreover, the initial states p are called race-free
themselves.

DEFINITION 24. When f satisfies (4.8), we use to say that it has a (con-
stant) initial state p. In this case we say that f is initialized and that p is its
(constant) initial state.

DEFINITION 25. If f satisfies (4.4), it is called absolutely stable and we also
say that it has final states. In this case the vectors pu bear the name of final
states (of f), or final values of the states (of f).

DEFINITION 26. If f fulfills the property (4.5), it is called absolutely race-
free stable and we say that it has race-free final states j. In this case the final
states p are called race-free.

DEFINITION 27. Suppose that the pseudo-system f satisfies (4.6). Then it
is called absolutely constantly stable or, equivalently, we say that it has a
(constant) final state p. In this situation the vector u is called the (constant)
final state.

REMARK 15. The previous terminology is related to the dualities initial-final,
initialized-absolutely stable as well as with hardware engineering. In hardware en-
gineering, ‘race’ means: ’‘which coordinate of x switches first is the winner’ or
perhaps ’several ways to go’. In this case ’race-free’ means ‘one way to go’. The
interpretation of the race-freedom is (vaguely): ’for any statistical fluctuations in

the fabrication process...’, see Remark 13.
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5. Initial time and final time

REMARK 16. We reveal the following properties on the pseudo-system f :
g(m)ﬁp(g(n)):

(5.1) vu e S Va e f(u)nS™,3u e B, 3ty € RVt < to, z(t) =
(5.2) Yu e S0 3ty e R,Vr € f(u) N S™, 3 € BVt < to, z(t) =
(5.3) Ity € R,Yu € S Va € f(u) N S™,3u € BVt < to,z(t) = 3
(5.4) Vu e S Va e f(u)n S, 3u e B, dty € R,VE > ty,x(t) = p;
(5.5) Yue S 3t e R,Va e f(u) NS, 3u e BVt >ty a(t) = u;
(5.6) ;e R, Vue S™ Vo e flu)nS™, 3ue BVt > tg,x(t) = p.

The properties (5.1) and (5.4) are fulfilled by all pseudo-systems and they are
presented here for the sake of symmetry of the exposure only.

The similarity of this remark with Remark 14 is relative. Indeed, by defining a
partial function S — R, for example in the case of (5.1), to associate the number
to € R with each state x € |J f(u) NS™ is not quite natural because ty is not

ueS(m)
unique (anyway we can make use of the axiom of choice). The reasoning is the
same for the number ty € R.

If f is the null pseudo-system or, more generally, if in one of (5.1),...,(5.3)
Yu e S0 ()N S™ =0, or in one of (5.4),...,(5.6) Yu € S, f(u)n S =0,
then that property is trivially fulfilled.

The dualities between (5.1) and (5.4); (5.2) and (5.5); (5.3) and (5.6) take
place and the following implications hold:

(5.3) = (5.2) = (5.1);
(5.6) = (5.5) = (5.4).
Once again, Vt < to and ¥t < to are equivalent in (5.1),...,(5.3) and Vt > t; and
Vt >ty are equivalent in (5.4), ..., (5.6).
DEFINITION 28. If f satisfies (5.1), we say that it has an unbounded initial

time and any to satisfying this property is called an unbounded initial time
(instant).

DEFINITION 29. Let be f fulfilling the property (5.2). We say that it has a
bounded initial time and any to making this property true is called a bounded
initial time (instant).

DEFINITION 30. When f satisfies (5.8), we use to say that it has a fixed
initial time and any to fulfilling (5.3) is called a fixed initial time (instant).

DEFINITION 31. Suppose that f satisfies (5.4). Then we say that it has an
unbounded final time and any ty satisfying this property is called an unbounded
final time (instant).

DEFINITION 32. If f fulfills the property (5.5), we say that it has a bounded
final time. Any number ty satisfying (5.5) is called a bounded final time (in-
stant).
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DEFINITION 33. We suppose that the pseudo-system f satisfies the property
(5.6). Then we say that it has a fized final time and any number ty satisfying
(5.6) is called o fixed final time (instant).

THEOREM 25. If the pseudo-system f has initial states, then the following non-
exclusive possibilities exist:
a) [ has initial states and an unbounded initial time iff

Vu e S Yz e f(u),3u € B, 3ty € RVt < tg,x(t) = 13
b) f has initial states and a bounded initial time iff

vu e S 3ty € R,V € f(u),3u € B® )Vt < to,x(t) = 13
¢) f has initial states and a fized initial time iff

Jty € R,Vu € S Va € f(u),3Ip € B™, Vit < to,2(t) = p;
d) f has race-free initial states and an unbounded initial time iff

vu e S0 3 e B",Va € f(u), 3t € R,VE < to, z(t) = p;
e) f has race-free initial states and a bounded initial time iff

Yu € g(m),ﬂu € B", 3ty € R,Vx € f(u),Vt < tg,x(t) = p;
f) [ has race-free initial states and a fized initial time iff

dtg € R,Vu € g(m),Elu € B", Vx € f(u),Vt < to,x(t) = w;
g) [ has a constant initial state and an unbounded initial time iff

Ju e B Yue S v e f(u),3tg € RVt < tg, 2(t) = 1
h) f has a constant initial state and a bounded initial time iff

Ju e B, Yue S 3ty e R,Vx € fu), vt < to,z(t) =
i) f has a constant initial state and a fived initial time iff

Ju e B, 3ty € R,Vu e S vz e f(u), vt < tg,z(t) = p.

PROOF. e) We must show that the conjunction of (4.2) and (5.2) on one hand
and

(5.7) vu e S0 3p e B, 3ty € R,Va € f(u),Vt < to,z(t) = p

on the other hand, are equivalent. This fact is obvious if f is null. Thus we can
suppose that f is non null and it is sufficient to consider some admissible arbitrary
input u € S,

(4.2) and (5.2) = (5.7).

From (4.2) we have the existence of a unique 1 € B™ depending on u such
that Vo € f(u),z(—o0 4 0) exists and z(—oco 4+ 0) = . Thus f(u) € S™ and
f(uw) N S™ = f(u). From (5.2) we infer that

Jto € R,Vx € f(u),Vt < to,z(t) = p,
where ty depends on u and the statement
Ju e B, 3ty € R,V € f(u),Vt < tg,z(t) = p

is also true as p and ¢y depend on w only. Relation (5.7) takes place.
(5.7) = (4.2) and (5.2).



5. INITIAL TIME AND FINAL TIME 27
(5.7) = (4.2) is obvious. On the other hand, for u € S(™) admissible and
arbitrary like before, there is a unique p € B™ depending on u such that
Jto € R,Vx € f(u),Vt < to,x(t) = p.
In particular, the statement
Jto € R,Vz € f(u) N S™ Vit < to,z(t) = p

is true, as well as

Ity € R, Vx € f(u)NS™, I e B™,Vt < to,z(t) = p,
ie. (5.2). O

THEOREM 26. The following non-exclusive possibilities exist for the absolutely
stable pseudo-system f:
a) [ is absolutely stable with an unbounded final time iff

Yu e ST Vr e f(u),3p € B, 3t; € RVt > ty,x(t) = s
b) f is absolutely stable with a bounded final time iff

Yu € Sv(m),ﬂtf e R,Vz € f(u),Ip € B",Vt > ty,2(t) =
¢) f is absolutely stable with a fixed final time iff

Jtr e R,Yu e S Va € f(u),Iu € BVt >t a(t) = 3
d) f is absolutely race-free stable with an unbounded final time iff

Vu e S 3 e B Vx € flu), 3ty € RVt >ty 2(t) = 1
e) f is absolutely race-free stable with a bounded final time iff

Yu € g(m),ﬂu e B", 3ty e R,Va € f(u),Vt >ty x(t) = 3
f) [ is absolutely race-free stable with a fized final time iff

Jdty e R,Vu e S 3, € B", Va € flw),Vt >ty z(t) =
g) [ is absolutely constantly stable with an unbounded final time iff

Ju e B, Yue S Vr e f(u),3t; € RVt >t a(t) = p;
h) f is absolutely constantly stable with a bounded final time iff

Jp € B, Vu € Sv(m),ﬂtf e R,Vz € f(u),Vt >ty x(t) =
i) [ is absolutely constantly stable with o fized final time iff

JpeB" e R, Vuc g(m),Vx € f(u),Vt >ty x(t) = p.

REMARK 17. In the conditions of Theorems 25 and 26 the following implica-
tions hold:

i) = h) = g
U U U
) = e = d
U 3 U
¢) = b = a)
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6. Initial state function and final state function

DEFINITION 34. Let be the pseudo-system f : Stm) P(g(”)). If it has initial
states, the function ¢, : ST — P(B") defined by

Vu € 5, g (u) = {w(—o00 + 0|z € f(u)}

is called the tnitial state function of f and the set

G = J ¢olw)
ues(m)
is called the set of the initial states of f.
DEFINITION 35. Consider the pseudo-system f. If it has final states, the func-
tion ¢y : Sm) — P(B™) defined by

Vu e S, ¢, (u) = {x(o0 = 0)|x € f(u)}
is called the final state function of f, while the set

O = U ¢f(u)
ueSim)
is called the set of the final states of f.

EXAMPLE 18. The constant function Sim) _, §(n) equal to p € B™ is a pseudo-
system with a constant initial state p and a fixed initial time. It is also absolutely
constantly stable with fized final time. The functions ¢y, ¢ and the sets ©, Oy are
defined and equal to {u}.

NotATION 10. IfVu € g(m), ¢o(u) has exactly one element, the usual notation
of the initial state function is ¢y : Sm) _, Bn, Similarly, for the final state function:
if Yu € :S’v(’”), ¢f(u) has exactly one element, we use the notation of the uni-valued
functions ¢ Sm) _, Bn,

THEOREM 27. Let f be a pseudo-system with initial states.

a) If its initial states are race-free, then Yu € g(m),qﬁo(u) has at most one
element.

b) If f has a constant initial state p, then ¢o(u) = {p} is true for any admissible
w; for f =0 we have Oy =0 and for f # 0 we have O¢ = {u}.

PROOF. a) Suppose that f has race-free initial states and let be u € Sm) 1t
f(u) =0, then ¢y(u) = 0@ and if f(u) # 0, then there is a unique p € B", depending
on u, such that Vo € f(u),z(—o0 + 0) = p and ¢q(u) = {u}.

b) Suppose that f has a constant initial state pu. If f is null, then Vu €
Sm) ¢o(u) = 0 and ©y = 0, otherwise for any admissible u we have V& €
f(u),z(—00 +0) = p and ¢y(u) = {u}, thus Og = {u}. O

THEOREM 28. Consider the pseudo-system f with final states.

a) If its final states are race-free, then Yu € S, ¢¢(u) has at most one ele-
ment.

b) If f has a constant final state p, then ¢ (u) = {u} is true for any admissible
w; if admissible inputs do not exist, then ©y = () and if admissible inputs exist, then

Or ={n}-



CHAPTER 4

Systems

The systems are particular pseudo-systems, namely those non-null pseudo-
systems satisfying the property that the admissible inputs and the possible states
have initial values. Nevertheless, there is an asymmetry here between the attributes
initial (states, time) and final (states, time). This is justified by the fact that we
use to reason temporally by choosing an initial time instant and the increasing
sense of the time axis. Even if many notions characterizing the systems may be
defined also for the pseudo-systems, we prefer to present them as related to the
systems, as the systems are closer to our modeling needs. We define and study
some fundamental notions: subsystems, dual systems, inverse systems, Cartesian
product of systems, parallel and serial connection of systems, intersection, union
and morphisms of systems.

1. Definition of the systems

DEFINITION 36. For the pseudo-system f : S(™) — P(g(”)), the set Uy of the
admissible inputs defined by

Us = {ulu € ST, f(u) # 0}
is also called the support (set) of f.

DEFINITION 37. The (asynchronous) pseudo-system f is called (asynchro-
nous) system if

a) Uy #,

b) Up S0,

¢)Yu € Uy, f(u) c SM.

NOTATION 11. We identify the system f with the function fi : U — P*(S(™),
where U = Uy, defined by Yu € U, fi(u) = f(w). This identification leads to the
usual notation of the systems under the closed form i.e. f:U — P*(S™), where
U c 8 is non-empty. If Yu € U, f(u) has a single element, then we use the
notation f: U — S of the uni-valued functions.

REMARK 18. In implicit form, the systems consist in one or several equations
or inequalities with existing solutions x € S that depend on the parameter u € U.
We keep in mind that any v € SU™ \ U gives no solutions x € S™ and that for
any u € U, no solutions x € S \ SM) egist.

The systems are those non-null pseudo-systems f for which the admissible in-
puts and the possible states have initial values (implying that f has initial states).
The concept creates an asymmetry between the initial states and the final states
because:

- it is natural to consider the inputs as commands, a deliberate manner of acting
on the circuit modeled by f in view of producing a certain effect. But this is made
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after choosing an initial time instant ty from which we order our actions in the
increasing sense of the time axis (not in both senses);

- it is natural to associate with the requirement U C S (Definition 37 b) and
the explanations from the previous paragraph) a requirement (Definition 37 ¢)) that
is dual to absolute stability: the system orders its reactions from an initial time
instant, in the increasing sense of the time axis (not in both senses).

The way from two senses on the time axis to one sense and the existence
of the initial time instant were anticipated at Remark 7 by the fact that the se-
quences (t,),cz consistent with the differentiable functions are replaced by (ty)reN
sequences.

EXAMPLE 19. The fact that in Ch. 3 Example 17, the double inequality (3.1)
defines a S — P*(S) system is obvious because

Vue S5 (0,d, [ w@)<ut—8< [J u®.
et—d,t) Eet—d,t)

Thus having initial values, x(t) = u(t—20) satisfies it whenever 6 € (0,d]. Moreover,
when u has the initial value u(—oo + 0), any solution x of this double inequality
has the initial value x(—o00 + 0) = u(—oco +0). In addition, in order to make the
example correct, we must ask that Vu € S\ S, the inequality has no solutions.

NOTATION 12. Let f : S(m — P(g(")) be a pseudo-system with the property
that

(1.1) Ju e ST, flu)n S™ £ 0.

We denote by [f] : U — P*(S™) the function defined in the following way
(1.2) U = {ulu € S, f(u)nS™ 0},

(1.3) Vu € U, [f](u) = f(u) N S™.

THEOREM 29. [f] is a system.

PROOF. The relation U # § follows from (1.1) and (1.2), U C S is a con-
sequence of (1.2) and Yu € U,[f](u) C S™ follows from (1.3). Thus [f] is a
system. ]

DEFINITION 38. For any pseudo-system f satisfying the property (1.1), [f] is
called the system induced by f.

THEOREM 30. The pseudo-system f is a system iff f = [f].

PROOF. <= is obvious, since [f] is a system.

= There are admissible inputs and let u be such an input. Because f is a
system, u has an initial value. From f(u) C S we have that f(u) = f(u)NS" =
[f](uw) and, due to the fact that u was arbitrarily chosen, we infer Yu € U, f(u) =
[fl(u), i.e. f=][f], where U = Uy. O

2. Initial states and final states

THEOREM 31. Suppose that the pseudo-system f : St — P(g(")) is a system

and its support set is U € P*(S(’”)). Then the following statements are equivalent:
a) Ch. 8, statement (4.1) and

(2.1) Yu € UVz € f(u),3p € B™, Tty € R, VE < to, z(t) = p;
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b) Ch. 3, statement (4.2) and

(2.2) Vu € U,3p € B™, Va € f(u),Ito € R,V < to,z(t) = p;
¢) Ch. 3, statement (4.8) and

(2.3) Ju e B" Vu e Uz € f(u),Ity € R,Vt < tg,x(t) = 15
d) Ch. 3, statement (4.4) and

(2.4) Vu e Uz € f(u),Ip € B", 3ty € RVt > ty,x(t) = 5
e) Ch. 3, statement (4.5) and

(2.5) Vu e U, dp e B", Vo € f(u), Ity € RVt > ty,a(t) = p;
f) Ch. 3, statement (4.6) and

(2.6) Ju e B",Vu e UVx € f(u), Ity € RVt > tf,z(t) = p.

PROOF. Because Yu € S(™) \ U, the statement = € f(u) is false, the corre-
sponding property is trivially fulfilled, such that the only points where the truth of
(4.1),...,(4.6) from Ch. 3 needs to be discussed are u € U. O

REMARK 19. For any system f, the property (2.1) is true.
Theorem 31 says that we can limit the analysis of the systems, from the initial
and final states point of view, to the U — P*(S™) functions, as expected.

3. Initial time and final time

THEOREM 32. Let the pseudo-system f : Sm) P(g(")) have the support
U c S") _If fis a system, then the following equivalencies hold:
a) Ch. 8, statement (5.1) and

(3.1) Yu € UVz € f(u),3p € B™, Tty € R, VE < to, z(t) = p;
b) Ch. 3, statement (5.2) and

(3.2) Yu € U, 3ty € R,Vx € f(u), 3 € B",Vt < to,z(t) = p;
¢) Ch. 3, statement (5.8) and

(3.3) Jto € R,Vu € U,V € f(u),Iu € BVt < to,x(t) = 1

d) Ch. 3, statement (5.4) and

(3.4) Yu € UVx € f(u) NS, 3u e B, 3ty € RVt > ty,a(t) = p;
e) Ch. 3, statement (5.5) and

(3.5) Vu € U,3t; € R,Vx € f(u) NS, Fu € BVt > tg,a(t) =
f) Ch. 3, statement (5.6) and

(3.6) 3ty € R,Vu € UVr € f(u)NS™, 3 e BVt > tr,a(t) =p

PROOF. Reasoning is similar with that of Theorem 31. In (3.1),...,(3.3) we
have used the fact that Vu € U, f(u) N S™ = f(u). O

REMARK 20. The property (3.1) coincides with (2.1) and is always fulfilled.
The property (3.4) is always fulfilled too.
From now on, in the case of the systems we shall use the statements (2.1),...,

(2.6), (3.1),..., (3.6).
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4. Initial state function and set of initial states

THEOREM 33. For any system f, the initial state function ¢, and the set of
the initial states Oq exist.

PRrROOF. This holds for each pseudo-system with initial states. O

NOTATION 13. We identify the initial state function ¢ : Sm) P(B™) with
the function ¢y : U — P*(B™) defined by Yu € U, ¢1o(u) = ¢g(u) where U = Uy
is the support set of f. This identification allows us to use the notation ¢y : U —
P*(B") and, when Yu € U,x(—o0 + 0) is unique, the notation ¢, : U — B™.

REMARK 21. Unlike the initial states of f, that always exist, the final states
may not exist. If f has final states, the final state function ¢, : U — P*(B™) and
the set of final states O are defined.

5. Subsystems

THEOREM 34. Consider the pseudo-systems f,g : S(™ — P(g(")) with the
support sets denoted by U,V .
a) The following statements are equivalent

Vu e S, f(u) C g(u),
UcCV andVue U, f(u) C g(u).

b) If one of the statements from a) is true, g is a system and U # (), then f is
a system.

PROOF. b) follows from the fact that U # 0, U ¢ V € S and Vu € U, f(u) C
g(u) c 8™, O

DEFINITION 39. Let be the systems f : U — P*(S™), g : V — P*(S™),

U,V € P*(St™). If

UcCVandVu e U, f(u) C g(u)
we say that f is a subsystem of g or that it is included in g and the usual notation
for this is f C g.

REMARK 22. Intuitively, the fact that f is a subsystem of g means that the
modeling of a circuit is made more precisely by f than by g, possibly after consider-
ing a smaller set of admissible inputs. The relation C is a relation of partial order
between the U — P*(S™) systems, U runs over P*(S™)), where the first element
does not exist and the last element S : S(™) — P*(S(M) s given by

Vu e St 8 () = 5,
EXAMPLE 20. Let be the system f and take some arbitrary p € ©¢. The system
fu: Uy — P*(S™) defined by
U, = {ulu € U, ji € gy(u)},
Vu € Uy, fu(u) = {z|z € f(u),z(—o0+0) = u}

is a subsystem of f, called the restriction of f at the initial (value of the) state p.
Remark that f, is initialized and  is its constant initial state.

THEOREM 35. Let be the system g and f C g be an arbitrary subsystem. If g
has race-free initial states (constant initial state), then f has race-free initial states
(constant initial state) too.
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PROOF. If one of the previous properties is true for the states in g(u), then it
is true for the states in the subset f(u) C g(u) also, u € U. O

THEOREM 36. Let be f C g. If g has final states (race-free final states, a
constant final state), then f has final states (race-free final states, a constant final
state) too.

THEOREM 37. Given the systems f C g, if g has a bounded initial time (a fized
ingtial time), then f has a bounded initial time (a fized initial time).

ProOF. Like previously, if one of the above properties is true for the states in
g(u), then it is true for the states in f(u) C g(u),uw € U. O

THEOREM 38. Let f be a subsystem of g. If g has a bounded final time (a fived
final time), then f has a bounded final time (a fized final time).

THEOREM 39. If f C g, then we denote by vy : V. — P*(B"™) the initial
state function of g and by I'o C B"™ the set of the initial states of g. We have
Yu € U, ¢g(u) C vo(u) and ©g C Ty.

PROOF. As U C V and VYu € U, f(u) C g(u), the initial values of the states
in f(u) are among the initial values of the states in g(u), ¢o(u) C vo(u) making
©¢ C I’y also true.

THEOREM 40. If g has final states and f C g, we denote by v¢ : V — P*(B")
the final state function of g and by I'y C B™ the set of the final states of g. We
have Vu € U, ¢ ¢(u) C vyy(u) and ©f CT'y.

PROOF. The system f has final states from Theorem 36, thus ¢ and I'y exist.
The rest of the proof is similar to the proof of Theorem 39. O

6. Dual systems

NOTATION 14. For any u € S we denote by w € S its complement made
coordinately:

u(t) = (u(t), ..., um(t))-

NOTATION 15. If U C S is a space of functions, we denote by U* the set
(6.1) U* ={ulueU}.
~ THEOREM 41. Let be the pseudo-system f : Sm) _, P(g(")) for which f* :
Sm) — P(S™M) is the pseudo-system defined like this:

Vu € S0, f*(u) = {Flx € f(@)}.

By denoting by U the support set of f, we have that the support set of f* is U*. If
f is a system, then f* is a system.

PRrROOF. From (6.1) we get
U* = {afu e S, f(u) # 0} = {ulu € S, f@) # 0} = {ulu € ST, f*(u) # 0},

i.e. U* is the support set of the pseudo-system f*. At this moment suppose that f
is a system. From U # ) we infer that U* # (). The fact that Yu € U,u(—o0 + 0)
exists shows the truth of Yu € U*, u(—o0+0) exists, thus U* C S™). Because Vu €
U, f(u) € 8™ we have Vu € U*, f(@) C ™, thus Yu € U*, {Z|x € f(@)} c ST
and, eventually, Yu € U*, f*(u) C S™. f* is a system. O
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DEFINITION 40. Let be the system f : U — P*(S"), U € P*(S"™). The
system f*: U* — P*(S™) defined by
Vu e U™, f*(u) = {Z|lz € f(u)},
where U* satisfies (6.1), is called the dual system of f.

REMARK 23. To the types of duality previously presented we add the duality
between 0,1 € B that Definition 40 makes use of. If f models some circuit, then f*
models the dual of that circuit (with AND logical gates instead of OR logical gates
etc.) and it has many properties that can be inferred from those of f.

We note that Yu € U*, f*(u) = (f(w))*. This fact will be used later on.

THEOREM 42. (f*)* = f.

Proor. (U*)* = {uju € U*} = {uju € U*} = U and we note that Yu € U,
() (w) ={zlx € f*(@)} =A{z[z € f*@)} = f(w). O
THEOREM 43. For the system f, the following statements are equivalent:

a) f has race-free initial states (a constant initial state);
b) f* has race-free initial states (a constant initial state).

PRrOOF. We show that f has race-free initial states <= f* has race-free initial
states:

Yu € U,3pu € B", Vx € f(u),Ttg € RVt < to,z(t) = p <=
<= VueU,3peB"Vz € f*(u), Ity € R,Vt < tp,z(t) = p <=
<~ VYueU",IueB"Vre f*(u),It, € RVt < tyg,z(t) = g <=
< VYueU*,ueB"Vre f*(u), Ity € R,Vt < tg,z(t) = p.
In the previous statements, ¥Z € f*(@) is the notation for Vz,T € f*(u), while
Jp € B™ is the notation for 3u, 7w € B™ etc. O

THEOREM 44. For the system f, the following statements are equivalent:
a) f has final states (race-free final states, a constant final state);
b) f* has final states (race-free final states, a constant final state).

THEOREM 45. The following properties are equivalent for f :
a) f has a bounded initial time (o fixed initial time);
b) f* has a bounded initial time (a fixed initial time).

PROOF. Similarly with the proof of Theorem 43, we show that f has a fixed
initial time <= f* has a fixed initial time:
Ftg € R,Vu e U,V € f(u),Ip € B", Vi < tg,z(t) = p <
<~ g e R,Vu e U,Vx € f*(u),Tpu € B",Vt < tg,z(t) = p <
<~ Jtp e R,Yu e U*,VZ € f*(u),In € B",Vt < to,T(t) = 1 <
<~ Jtp € R,Vu e U*,Vz € f*(u),Iu € B",Vt < tg,z(t) = p,
where VZ € f*(u),Vu € U*... are notations similar to those from the proof of

Theorem 43. O

THEOREM 46. Let be the system f. The following properties are equivalent:
a) f has a bounded final time (a fized final time);
b) f* has a bounded final time (a fized final time).
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THEOREM 47. Denote by ¢ : U* — P*(B"™) the initial state function of f*
and by ©F the set of the initial states of f*. We have

Vu € U™, ¢o(u) = {Tilp € ¢o(a)},
05 = {zln € ©p}.
PrOOF. The assertions of the theorem are obtained from the fact that

Vu € U*, ¢5(u) = {x(—00 + 0)|z € f*(u)} =

= {z(-00+0)[z € f*(u)} = {a(-00+ 0)|z € f(w)} = {Hlp € ¢o(w)}
O

THEOREM 48. If f has final states, we denote by ¢% : U* — P*(B") the final
state function of f* and by @} the set of the final states of f*. We have

Vu e U™, ¢3(u) = {Tlp € ¢p (W)},
O} = {zln € O}

PrOOF. We use Theorem 44 to show that qS}, O} exist and the duality with
Theorem 47. O

THEOREM 49. For the systems f : U — P*(S™), g : V — P*(S™), U,V €
P*(S™) we have f C g <= f* C g*.

PRrROOF. We get the following sequence of equivalencies:

fCcg=UcCVandVueU,f(u) Cgu) <
—VuelUueVand f(u) C g(u) =
—VuelUueVand {z|z € f(u)} C {z|z € g(u)} =
—=VYueUueVand {ZT|x € f(u)} C {T|zr € g(u)} =
<~ VueUu€eVand f*(u) C g*(u) =
—VYueU"ueV"and f*(7) C ¢*(u) <
—VYueU"ueV"and f*(u) C g*(u) <=

U CV¥andVu e U*, f*(u) C g*(u) < f* C g¢*
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7. Inverse systems

THEOREM 50. Given the pseudo-system f Sim) P(g(”)), the support of the
pseudo-system f~1: S — p(S(M),
vz e S fY(z) = {ulu € Sz € f(u)}
18
X= |J f.
ueSm)
If f is a system, then f~' is a system too.

PROOF. Obviously, X is the support set of f~'. Suppose that f is a system.
Then f # 0 implies X # 0. The fact that Yu € S, f(u) € S™ (in this inclusion
f(u) is empty for some u) shows that X c ™. From Yu € S, f(u) #0 = u €
S0m) we infer Vo € S™, f~1(z) € S (in this inclusion f~1(z) is empty for some
x). All the requirements of Definition 37 are fulfilled, so that f~! is a system. [

DEFINITION 41. Let be the system f : U — P(S™),U € P*(S™). The system
f~1: X — P*(S"™)) given by

X = f(w),
uelU
Vo e X, f () = {ulu € U,x € f(u)}
is called the inverse of f.

REMARK 24. 1 is the inverse of f considered as a relation f C Sm) x 5,
The idea of its construction is that of inverting the cause-effect relation: with each
possible effect x it associates these admissible inputs u that could have caused it.

Working with f may be thought as referring to the analysis of a circuit, while
working with =1 may be thought of as referring to the control of a circuit.

In some properties that follow we shall use the truth of the equivalence u €

fl(x) <=z € f(u).
THEOREM 51. For the system f, we have (f~1)~! = f.

PROOF. Denoting by U’ the support set of (f~1)~!, we can write

U = U Tl 2) ={u|Fz € X,uc f(2)} =
zeX
={uF €U,z € f(u),uec fHa)y={uucU I cUTxc f(u)N flu)} =

={ulue U, €U, flu)N f(u) # 0} =T.

Thus the supports of (f~!)~! and f coincide. For any u € U we have

() ) = {zlr € X,ue fH(2)} = {zfe € fu)} = f(u).
U

THEOREM 52. Denote by ¢y : X — P*(B™) the initial state function and by
90_1 the set of the initial states of f~'. The following statements are true

Vo € X, ¢y (x) = {u(—o0 4+ 0)|u € U,z € f(u)},
0! = {u(—o00 + 0)|u € U}.
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THEOREM 53. Suppose that f~1 has final states and we use the notation d)}l
X — P*(B™), @;1 for its final state function and for its set of final states respec-
tively. We have
Vo € X, 97" (z) = {u(oo — 0)ju € U,z € f(u)},
@;1 = {u(co = 0)|u € U}.
THEOREM 54. If g : V — P*(S™), V € P*(S™)) is some system and f C g,
then f=1 C g7t and (f*)~' C (g*)~! take place.

PrOOF. With the notations X = |J f(u), Y = | g(u) we have:
uelU ueV

fCg<—= UcCcVandVuel,f(u) Cglu) =
= (X CYandVueUVre X z€ flu) =z € glu) <
(XCYandV:ceXVueUxef(u)ﬁng( ) =
(XCYandeEXVuEUqu (x):>u€g L)) <=
= (XCcYandVze X,fHa)cg ()<= f1cg
On the other hand, f C g implies f* C ¢g* (by Theorem 49) and from the previous
item we get (f*)~! C (¢*)7%. O
THEOREM 55. (f~1)* = (f*)~1.
PROOF. The support of (f~1)* is X* and the support of (f*)~!is
U f(w) = {#Bue Uz € f@)} = {z[Fu e Uz € f(u)} = X~
ucU*
thus the supports of the two systems coincide. For all z € X™* we get that

(f @) ={aue @} ={uluecUze f(u)}={uluecUzxec f(u)}=
={UIu€U*,w€f(u)}={qu€( 7)) = () (@),

8. Cartesian product

THEOREM 56. Consider the pseudo-systems f : Sm) P( "y, f S Sm)
P(S™)) and define the pseudo-system f x f': S(mtm’) . px(gntn')y py

Vu x o' € S (F s Y (u x ) = fu) x f(u).

If U, U’ are the support sets of f,f', then U x U’ is the support set of f x f'. If
I, f' are systems, then f x [’ is a system.

PROOF. Obviously, U x U’ is the support set of f x f’. Suppose that f, f’
are systems. We have that U # 0,U’ # () imply U x U’ # 0. Furthermore, U C
Sm) < 8 imply U x U’ ¢ §0™) x §(m') = §(m+m’) and vy e U, f(u) c S
Vo' e U, /(W) € S™) imply Yu x o' € U x U, f(u) x f'(u/) ¢ 8™ x §¢)
S(n+n")  Therefore , f x f'is a system.

DEFINITION 42. Consider the systems f: U — P*(S™), f': U’ — P*(8")),
where U € P*(S™) and U’ € P*(S"™")). The Cartesian product of f and f' is
the system f x f: U x U' — P*(S"*")) defined as

Vuxu' € UxU,(fxfuxu)=f(u)x f(u).

Ol
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REMARK 25. The Cartesian product of two systems is the system that represents
f and [’ acting independently on each other. It models two circuits that are not
interconnected.

Let f : U — P*(SM), f/ - U — P*(S™)), f" : U — P*(S")) be three
systems, where U € P*(S™), U’ € P*(S(™)) and U" € P*(S™"). The associa-
tivity of the law "X’ may be thought of by identifying the systems (f x f') x f" and
I x(f' < f"); any of them is denoted by f x f' x f". The support set of f x f' x f"
is denoted by U x U’ x U" e P*(Stm+m'+m™)) “its range is P*(SM+n'+n")) jts
inputs are denoted by u x v’ x u” € U x U' x U" and its states are denoted by
zxa' xz'"e(fxfxf)(uxu xu).

THEOREM 57. The systems f and f' have race-free initial states (a constant
initial state) iff f X f' has race-free initial states (a constant initial state).

PrOOF. For example, the conjunction of the statements
Ju € B",Vu e U,Vx € f(u), Tty € R,V < tg,x(t) = ,
I e BV W' e U'\Va' € f/(u), 3ty € R, VE < to, 2/ () = o/
implies
I, ) € B" x B Yuxu e UxU Vexa' €(fxf)(uxu),
Sty € RV <o, (a(t), (1)) = (40,
where each time we can take t; = min{to, t}}.

The other implications are obvious at this moment. O

THEOREM 58. The systems f and f' have final states (race-free final states, a
constant final state) iff f X [’ has final states (race-free final states, a constant final
state).

THEOREM 59. Let be the systems f, f'. The following statements are equivalent:
a) f and f' have a bounded initial time (a fived initial time);
b) f x f" has a bounded initial time (a fized initial time).

PROOF. For example, the conjunction of the statements
Jtg € R,Vu € U,V € f(u),Ip € B",Vt < to, x(t) = u,
3, e R,V € U'\Va' € f'(u'), 3/ € BY Vit < th, 2/ (t) = o/
is equivalent to the statement
J, e RVuxu €U xU' Vaexa' € (fxf)(uxu),
) € B x BY vt <t (a(t), /(1)) = (u, ).
O

THEOREM 60. The systems f and f’ have a bounded final time (a fixed final
time) iff f x f' has a bounded final time (a fived final time).

THEOREM 61. Let the systems f and f' be defined as before. Denote by ¢, ¢y,
their initial state functions and by (¢ x ¢ )g : U x U' — P*(B"") the initial state
function of f x f'. Denote by @0,@6 the sets of the initial states of f and [’ and
let (© x ©)¢ be the set of the initial states of f x f'. We have

Yuxu €U x U (¢ x ¢ )o(uxu)=dg(u) x ¢p(u),



8. CARTESIAN PRODUCT 39

(O x ©')y = O x O

PrOOF. We obtain: Vu x v’ € U x U’,

(¢ x ¢")o(ux u') = {(z(—00+0),2'(~00 + 0)) ]z x 2’ € (f < f)uxu)} =
= {(x(—00 +0),2' (=00 + 0))|z x 2’ € f(u u')} =
={(z(-00+0),x (*OO+0))|$€f()$€f N} =

= {z(~00 + 0)|z € f(u)} x {2’ (-0 + 0)[" € f'(u)} = dy(u) x ¢y(u),
©x00% = |J @xdouxd)= (] lu) xg@

uxu' eUxU’ uxu' eUxU’

!

= Jdow) x |J ¢o(u') =60 x 8.
uelU u' €U’

]
THEOREM 62. If f,f" have final states, we denote by ¢f,¢'f their final state
functions and by (¢ x ¢') g : Ux U’ — P*(B"*™") the final state function of f % f'.
Denote by @f,G/f the sets of the final states of f and f' and by (© x ©)y the set
of the final states of f x f'. We have
Vuxu' eUx U, (¢x¢)p(uxu)=dp(u) x ¢pu),
(©x6);=0;x0].
THEOREM 63. Let be the systems f:U — P*(S™M), g:V — P*(S™M), f’ :
U — P*(8M), ¢/ : V' — P*(S™)) with U,V € P*(S (M) and U', V' € P*(S(m)),
We have that f Cg and f' Cg iff fx f' Cgxyg'.
PrROOF. We have
fCgand f' Cg
< (UcCVandVueU, f(u) C g(u)) and (U C V' and Vu' € U', f'(v') C ¢'(u'))
< UCVandU CV' andVu xu' € U xU’, f(u) C g(u) and f'(u') C ¢'(u')
S UXxU CVxViandVuxu €U x U, f(u) x f'(u') C g(u) x g'(u)
S UXxU CVxViandVuxu eUx U, (f x f)(uxu)
— fxfcgxg.

C (g x g)(uxu)

(]
THEOREM 64. For any systems f, f' we have (f x f')* = f* x f'*.

PROOF. First of all we note that (U x U')* = U* x U™

. Furthermore, for all
uxu € (UxU")*, we can write

(f x f1) (uxu) ={z xa/|lz x 2" € (f x f)(uxw)} =
={Txd|zxa e(fxfuxu)y={Fx2|rxa’ € f@)x f(v)}=
={T x|z € f(a), 2" € f'( )}_{$X$'|»’U€f()$’€f'*( ')}:
={z x|z € ff(u),2" € f*()} ={z x|z x 2’ € f*(u) x f*()} =
={zxa|zxa" e (f*x ) uxu)}=(fxf)(uxu).

THEOREM 65. Let be f and f'. We have (f x f/)~t = f=t x f'=1.
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PROOF. Denote by W, W’ the supports of (f x f/)~%, f~1 x f/~1. We have
w= U UxMuxd)= | fa)xf@)=

uxu' eUxU’ uXu' €eUxU’
- UJrwx Y rw)y=w'
uel w ey
Thus, for any x x 2’ € W, we can write
(fx Y Nexa) = {uxduxd eUxU zxa' €(fxf)uxu)}
= {uxd|uxu eUxU zxa € flu)x f(u)}

{fuxdlueUnw el x € f(u),z' € f(u)}
{uxu'ue f~(x),u € f7' ()}
{uxu|luxu € f(x)x 1)}
= {uxduxu €(f~x @ xa)}

= (fTIx @ xa).

9. Parallel connection

THEOREM 66. The pseudo-systems f : S(m) — P(SM), f1 : §tm) — p(S(n")
are given for which we define (f, f;) : St — P(S"+7)) by

Vu € ST (f, f)(w) = (f x f1)(ux u).

If U, U7 are the support sets of f, fi then the support of (f, f1) is UNU;. If f, fi
are systems satisfying U N U # O, then (f, f1) is a system.

PROOF. Obviously UNUj is the support of (f, f{). Suppose that f and f| are
systems and U N U{ # . From U c S, U! c S™) we infer U N U] C S™ and,
moreover, Vu € U, f(u) € S, Vu € U}, fi(u) € S™) imply Vu € UNUY, f(u) x
fl(u) € 8 x §() = glntn’), O

DEFINITION 43. Consider the systems f : U — P*(S™), fi : U — P*(8™"")),
U,U; € P*(S"™) with UNU] # 0. The system (f, f}) : UNU| — P*(S"+n))
defined by

Vu e UNUL, (f, fi)(u) = (f x fi)(uxu)
is called the parallel connection of the systems f and f7.

REMARK 26. The parallel connection of two systems f and fi is the system
that represents f, fi acting independently on each other under the same input. The
study of the parallel connection of the systems is made in quite similar terms with
the study of the Cartesian product of systems from the previous section.

Suppose that f : U — P*(SM), fl : U] — P*(S")), fi - U — P*(§"")
are three systems where U, UL, U € P*(SU™). If UNU| N U # 0, we identify
((f, f1), 1) with (f, (f1, f{')); any of them is denoted by (f, f{, f{'). The support set
of (f, f1, f1) is UNU, nUJ € P*(8™), its range is P*(S™t7'+17)) its inputs
are w € UNU] NU{ and its states are x X ' x 2" € (f, f1, f1)(w). This is the
associativity of the law of parallel connection of the systems.
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10. Serial connection

THEOREM 67. Let be the pseudo- systems fo8m - P(g(" ) with the sup-
port U C Sm) and h: S — P(S )) with the support X C S We ask that

U f(u) C X is true and we define the pseudo-system ho f : S(™ — P(S®)) in
uelU
the following manner:

Vu € St ( = U e
z€f(u)

We have that the support set of ho f is U. If f, h are systems then ho f is a system.

PrOOF. Obviously, U is the support set of ho f. Suppose that f, h are systems,
thus U # (. We have U ¢ S™ and

Vu € U, ( = | @) c Jh) cs®

z€ f(u) reX

therefore h o f is a system. O

DEFINITION 44. Consider the systems f : U — P*(S™), U € P*(S™) and

h:X — P*(S®), X € P*(S™) and suppose that the condition |J f(u) C X is
uelU
fulfilled. The system ho f:U — P*(S(p)) defined as

Yu e U, ( Uh

z€ f(u)
is called the serial connection of the systems h and f.

REMARK 27. The system h o f coincides with the composition of h and f,
thought of as relations. In the situation when |J f(u) C X, we interpret ho f as
uelU
the sequential action of f and h: f acts first and h second, the states of f being
the inputs of h. Thus, the possible states of f become the possible inputs of h,
representing a certain loss of precision that occurs when modeling large circuits.
Consider the systems f,h and k: Z — P*(8@), Z € P*(S®)) with |J f(u) C
uelU
X and | h(z) C Z true. The associativity of the serial connection of k,h and f
zeX
consists in noting that

VueU, ((koh)o fiw)= | (koh)x)= |J U k

zE€f(u) z€ f(u)yeh(z)
= U kw= U k@ =(Fko(ho)(w).
ye U h(») y€E(hof)(u)

xe f(u)

On the other hand if 1y : U — S(m) s the canonical injection and 1gwm) : S
S s the identity, we note that

VueU (folv)w = |J fl
v=1y (u)
Yu € U, (1S(n) o f U 15(%) ( )

z€ f(u)
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We mention a version of Definition 44 that we have used in previous works:

instead of | f(u) C X we ask that |J f(u)NX # 0 is fulfilled and ho f : W —
uclU uclU

P*(S™) is defined as
W ={ulu €U, f(u) N X # 0},
Yue W, (hof)wy = ) hl).
z€ f(u)NX

THEOREM 68. Let be the systems f,h such that |J f(u) C X. If h has a
uclU
constant initial state, then ho f has a constant initial state too.

ProOOF. From
JveBP Ve e X,Vy € h(z), Ity € RVt < tg,y(t) =v
we infer
Jv e B, Va € | f(u),Vy € h(z), 3o € R,V < to,y(t) = v,
uelU
v e BP,Vu € U,Vz € f(u),Vy € h(x),Tto € R,Vt < to,y(t) = v,
e B, Vue UVy € (ho f)(u), Ity € R,Vt < to,y(t) =v.
]

THEOREM 69. If h has final states (a constant final state) and the system ho f
is defined, then ho f has final states (a constant final state).

THEOREM 70. Let be the systems [ and h with |J f(u) C X. If h has a fized
uelU
initial time, then ho f has a fized initial time.

ProoOF. From
Jtop € R,Va € X, Vy € h(zx),Iv € BP Vit < tg,y(t) =v

we get
Jto € R,Vx € U f(u),Yy € h(x),3v € BP Vt < to,y(t) = v,
uelU
Jto € R,Vu € U,Vz € f(u),Vy € h(z), v € BP Vt < g, y(t) = v,
Jto € R,Vu € U,Vy € (ho f)(u), v € BP,Vt < to,y(t) = v.
O

THEOREM 71. If h has a fized final time and |J f(u) C X, then ho f has a
uelU
fized final time.

THEOREM 72. We consider the systems f and h having the property that the
serial connection system h o f exists. Denote by 1y,00 and Ag the initial state
functions of h,ho f and the set of initial states of ho f respectively. The following
formulae are true:

Yu € U, 60(u) = U Mo (),
z€f(u)

Ag = U U 1o ().

u€U z€f(u)
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PrOOF. We have

Vu € U, 80(u) = {y(=00 + 0)ly € (ho f)(w)} = {y(~cc+ 0y € |J h(x)} =
zef(u)

U w(—o+0)lyeh@} = |J nol®).

z€f(u) z€f(u)

We conclude that
Ao=Joow =) U nol
uelU u€U z€f(u)

O

THEOREM 73. Let be the systems f and h such that ho f exists. Suppose that
h has final states and use the notations ng, 65 and Ayg for the final state functions
of hyho f and for the set of final states of ho f respectively. The following formulae
are true:

Vu e U,bf(u) = U ny(z),

z€f(u)
Ap= U U Uf(x)
u€U z€f(u)

THEOREM 74. Let us consider the systems f : U — P*(S™), g : V —
P(SM), U,V € P*(S"™) and h : X — P*(SW), hy : X; — P*(SW), X, X; €
P*(S™). We have:

a)if Jg(u)C X and f C g then |J f(u) C X and ho f Chog;
ucV uclU
b) if Gf(u)CX and h C hy thenGU f(u) C X1 and ho f Chyof.

uelU uelU

PRrROOF. a) The hypothesis |J g(u) € X, U C V and Yu € U, f(u) C g(u)
ucV

U s c Jgw c Jgw c x

uelU uelU ueV

shows that

and we have

Yu e U, ( U h(zx U h(z) = (hog)(u).
z€ f(u) z€g(u)
b) The hypothesis states that |J f(u) C X, X C X7 andVz € X, h(z) C hi(z),
uelU
wherefrom
U fw) c X c xy,
uelU
Yu € U, ( U h(z U hi(x) = (h1 o f)(u).
z€f(u) z€f(u)

0

THEOREM 75. Let be the systems f and h with |J f(u) C X. We have that
uelU
(ho f)* and h* o f* exist and (ho f)* = h* o f*.



44 4. SYSTEMS

PROOF. The condition of existence of (h o f)* coincides with the condition of
existence of ho f. It is fulfilled. The condition of existence of h* o f* is obtained by
passing in the inclusion |J f(u) C X to the complementary of all functions:

uelU
U rw=Ur@=w = fwrcx
ueU* ueU uelU uelU
Both (ho f)* and h* o f* have the domain U*, thus for any u € U* we have:
(ho f)*(u)=((hof) (U ra@) = U (@) =
z€f () z€f(u)
- Ur@= U r@=0ofw.
z€f(a) TES*(u)

O

THEOREM 76. For any system f, the systems f~' o f and f o f~! have the

support sets U and X = |J f(u) and the following statements hold:
uelU

VueU, (f~ho f)(u) = {u[u" € U, f(u) N f(u') # 0},
Ve e X, (fo f)(x)= {2l € X, f (@) n [~ (") # 0}
PRrOOF. Because |J f(u) =X, f~!o f exists and has the domain U. We have

uelU
Vue U, (ftof U 1 U {Wl eUzxe fu)} =
zE€f(u) z€f(u)
— (W’ € U,3x € F(u) N F()}y = {u/u’ € U, f(u') N f(u) # 0}
and similarly for the other statement. O
THEOREM 77. Let be f : U — P*(S™),U € P*(S™) and h : X — P*(SW),

X € P*(S™), such that the condition | f(u) = X is fulfilled. We have (hof)~!
uelU
f~ton™t.

PrROOF. Denote Y = |J h(x). From |J f(u) = X we infer that h o f exists,
zeX uelU

thus (ho f)~' : Y — P*(S(™) exists and from |J h~'(y) = X we infer that
yey

f~loh™l:Y — P*(S(™) exists. We can write:
Yy €Y, (hof) " (y) = {ulu € U,y € (hof)(w)} = {ulu € U, 3z, € f(u),y € h(z)} =

={uueU3r,zeh ™ y,uef M)} = [J f@=("oh ).
z€h~1(y)
]

THEOREM T78. Consider the systems f : U — P*(S™), U € P*(S™), ' :
U’ — P(st N, U’ e P*(S M), h: X — P*(S®), X € P*(S™) and W' : X' —

P*(S®)), X" € P*(S")). If U f(u) € X and |J f'(v') C X' are true, then
u€U u' €U
the following formula

(hxh)o(fx f')=(hof)x(hof)
holds.
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PROOF. Because

U xMuxd)= |J  fxf@)=Jfwx [ f)cxxx’

uxu'eUxU’ uxu' eUxU’ uelU u' eu’

we obtain that (h x h') o (f x f’) exists. But ho f and I/ o f exist themselves, from
the hypothesis, wherefrom (ho f) x (h' o f') exists. We can write

Vuxu' € UxU, ((hxh)o(fxf)) uxu)= U (hx W)(xx2') =
xz' €(fXf)(uxu’)

= U  r@xw@e)= | nx)x |J W)=
Xz’ € f(u)X f'(u') z€f(u) ' ef(u’)

= (ho f)(u) x (h" o f1)(w') = ((ho f) x (R o ) (u x u).
O

THEOREM 79. Let be the systems f : U — P*(S™), U € P*(S™), fi: U] —
P*(S™)), U} € P*(S™), h: X — P*(S®), X € P*(S™), W : X' — P*(8®)),
X' € P*(S™). We suppose that U NU| # O and the inclusions |J f(u) C

ueUNU{

X, U filw) C X are true. In these conditions we have
ueUNU{

(hx h')o(f, f1) = (ho f,h o f).

PROOF. (f, f1) is defined and has the support UNU7. (hxh')o(f, f1) is defined
because

U mhw= U rwxfiw= J fwx [J fwc

ueUNU] ueUNU; ueUNU; ueUNU{
c Jrw x | A cxxx
uelU ueU]

The systems ho f and h'o f{ are defined, from the hypothesis and have the supports
U and U{, thus the system (ho f, h' o f]) exists and has the support UNU] etc. O

11. The Complement, an open problem

DEFINITION 45. Let be f : U — P*(S™),U € P*(S"™). The system Cf :
W — P*(8™) defined by

W= {ulu e U, f(u) # 5™} U (5™ \ V),

(n)
Vu e W,Cf(u) = { o 5>7LJ)07(137¢UU€ Y

where W # 0, is called the complement of f.

REMARK 28. Intuitively, if x € f(u) are those states that model a circuit, then
x € Cf(u) are the states that do not model the circuit.

Because both the naturalness and the utility of the complement Cf are not
obuvious at this moment, we leave its use as an open problem.
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12. Intersection

THEOREM 80. Consider the pseudo-systems f,g : Sm) P(g(”)) for which
we define the pseudo-system f N g: S(™ — P(S™) by

Vu e ST (fNg)(u) = fu) Ng(w).
Denote by U and V' the supports of f and g. We have that the support of f N g is
(12.1) W ={ulueUNV, f(u)Ng(u) #0}.
If f and g are systems and Ju € UNV, f(u) Ng(u) # O, then f N g is a system.

PROOF. Suppose that f, g are systems and W # (). From W c U ¢ S and
Yu € W, (fNg)(u) = fu)Ng(u) C f(u) C S we infer that fNg is a system. [

DEFINITION 46. Let be the systems f : U — P*(S™), g : V — P*(S™) with
U,V € P<(S™). If e UNV, f(u)Ng(u) # 0, the system fNg: W — P*(S™)
defined by

Vu e W, (fNg)(u) = f(u) Ng(u),
where W satisfies (12.1), is called the intersection of f and g.

REMARK 29. The intersection of the pseudo-systems represents the gain of
information (of precision) in the modeling of a circuit that follows by considering
the simultaneous validity of two (consistent!) models.

In the special case when the system g is constant: g : S — P* (S(")), Yu €
S g(u) = X, where X C S™ is some space of functions, then fNX : W —
P*(S™) is the system given by

W ={ulu €U, f(u) N X # 0},
Yue W, (fNX)(u) = flu)NX.
We interpret the system f N X in the following manner: when f models a circuit,

fNX represents a gain of information following from the statement of a requirement
that does not depend on wu.

ExXAMPLE 21. We give some possibilities of choosing, in the intersection fNg,
the constant system g = X :

a) the initial value of the states is null;

b) the coordinates x1, ...,x, of the states are monotonous;

¢) at each time instant, at least one coordinate of the state should be 1:

X = {zjz € S™ z1(t) U... Uz,(t) = 1};
d) the state is allowed to switch with at most one coordinate at a time:
X = {z|lr e S™ Vt,x(t — 0) # x(t) = i € {1,...,n}, Dx;(t) = 1};
e) X represents a stuck at 1 fault:
Jie{1,...,n}, X = {z|x e S™, z;(t) = 1}.

This last choice of X is interesting in designing systems for testability, respectively
in designing redundant systems.

THEOREM 81. Let be the systems f : U — P*(S™) and g : V. — P*(S™),
U,V e P(SM™). If 3uec UNV, f(u) Ng(u) # 0 and f has race-free initial states
(a constant initial state), then f N g has race-free initial states (a constant initial
state).
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PrOOF. fNg C f and the statement of the theorem follows from Theorem
35. O

THEOREM 82. If f has final states (race-free final states, a constant final state)
and f N g exists, then f N g has final states (race-free final states, a constant final
state).

THEOREM 83. If f has a bounded initial time (a fized initial time) and f N g
exists, then f N g has a bounded initial time (a fived initial time).

PrOOF. fNg C f and the results follow from Theorem 37. O

THEOREM 84. If f has a bounded final time (a fized final time) and fNg exists,
then f N g has a bounded final time (a fived final time).

THEOREM 85. Let be the systems f,g9. We have (¢ Ny)o: W — P*(B"),

Yu € W, (¢ Nv)o(u) = ¢o(u) Nyo(u),
©nT)o = |J (¢n7)o(w).

ueW
We have supposed that the domain W of f N g is non-empty and we have denoted
by doyY0, (PN Y)o the initial state functions of f,g, fNg and by (O NT)y the set of
initial states of fNg.

PROOF. We can write that Yu € W,
(@ NY)o(u) = {z(—00 +0)|z € (f Ng)(u)} = {x(-00+0)|x € f(u) Ng(w)} =

= {z(=o0 + 0)[z € f(w)} N {z(=00 + 0)[x € g(u)} = do(u) N7o(w).
O

THEOREM 86. If f,g have final states, then we have (¢ Nvy)s: W — P*(B"),
Vu € W, (¢ Ny)p(u) = ¢p(u) Ny (u),

©nD); = |J (6n)sw.

ueWw

We have supposed that W # () and the notations are obvious and similar with those
from the previous theorem.

THEOREM 87. Let be the systems f : U — P*(S™), fi : Uy — P*(S™),
gV — P*(S™) with U,U,,V € P*(S"). If f C f1 and if f N g exists, then
f1 N g exists and the inclusion f Ng C f1 Ng is true.

PROOF. Denote by W the set from (12.1) and by W the set
Wy ={u|u e U1 NV, fi(u) Ng(u) # 0}.

From the fact that U C Uy, Yu € U, f(u) C fi(u) and W # ), we infer W C W,
W, # 0 and, furthermore, we have Vu € W, (fNg)(u) = f(u)Ng(u) C f1(u)Ng(u) =
(f1Ng)(u). O

THEOREM 88. If f N g exists, then (f N g)*, f*Ng* exist and
(fng)=fng.
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PROOF. Denote by W the domain (12.1) of f Ng. The domain of (f Ng)* is
W* and the domain Wi of f* N g* is
Wi ={ulu e U NV* f*(u)Ng*(u) # 0} =
={ufueUnV {zlz e f@)}n{z|lz € g(u)} #0} =
={tulu e UNV,{Z|z € f(u)} N {ZT|z € g(u)} # 0} =
={ujlue UnNV,{zlz € f(u)} N{z|z € g(u)} # 0} = W™
Moreover, for any u € W*, we infer
(fNg)(w) ={zlz e (fNg)@} = {Tlx e f@) Ngw)} =
={zlz e f@}n{zlz e 9@} = f*(u) Ng"(u) = (f Ng*)(w).
O

THEOREM 89. Let be the systems f : U — P*(S™),g:V — P*(S(") U,V ¢
P*(S™). If Ju € UNV, f(u) Ng(u) # 0, then the systems (f Ng)~t, f~1ng™!
exist and they have the same support set

X= | Gwngw).

ueinVv

FPurthermore, we have
(fng)t=f"ng"

PROOF. Obviously X is the support set of (f N g)~!. We can write

X= |J (fwngw)={zBueUnV,ze fu) Ng(u)} =

ueUnv

={zlz € U flv)n Ug(v),EIu cUNViue fz)and u € g~ (x)} =
velU veV
= {zlz e [JF@)n |Jo), f @) ng~"(x) #0}.

velU veV
Thus X is the support of f~1 N g~! too. We have Vz € X,
(fng)Ha)={ulucUnNV,z e (fng)(u)} ={uucUnV,zc flu)yNng(u)} =

={ulueUnV,z € f(u )}ﬂ{u|u€UﬁVx€g(u)}:

={uue Uz e fw)}n{uueV,zegu}=fa)ng " (z) = (fNng ")(x).
O

THEOREM 90. Let be the systems f: U — P*(S™), g:V — P*(S™), U,V €
P*(SU™)Y and f': U — P*(S")), U € P*(S)). If Ju € UNV, f(u) N g(u) # 0,
then the systems (f Ng) x f',(f x f'YN (g x f') are defined and W x U’ is their
common support, where we have put

W ={ulu e UNV, f(u)Ng(u) # 0}.

We have the equality
(fng) x fr=(0>xf)nlgxf).
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PROOF. We show that W x U’, the support set of (f Ng) x f/, is also the
support set of (f x fYN(gx f'):
{uxvuxu € UxU)NV xU),(f x f)uxu)n(gx f)luxu)#0}=
={uxvuxu e (UNV)xU',(f(u) x f'(u))N(g(u) x f'(v)) # 0} =
={uxdueUnV,u el f(u)Ng(u) #0 and f'(«) # 0} =
={uxdvjueWu elU'} =W xU'.
Furthermore, for any u x v’ € W x U’, we have
(fNg) x f)luxu)=(fNg)(u) x f'(u) = (f(u) Ng(u) x f'(u) =
= (f(w) x f'(u)) N (g(w) x f'(u)) = (f x f)luxu)N(gx f)(uxu)=
= ((f x f)N(gx f))(uxu).
]
THEOREM 91. Consider the systems f : U — P*(S™), g : V. — P*(S™),
fl U} — P*(S™)), with U,V,U}| € P*(S™). Suppose that Ju € UNV NU}, such
that f(u) N g(u) # 0. Then the set
W' ={ulue UNV NU], f(u) Ng(u) # 0}
is the non-empty support of the systems (f Mg, 1), (f, f1)N (g, f1) and the equality
(f g, fi) = (f, f) N (g, f1)
holds true.

PROOF. The set W is the support of (fNg, f1) and we show that it is also the
support of (f, f{) N (g, f1). Denote by

W" = {ulu e (UnU) NV AU, (f, f1)(w) N (g, f1)(u) # 0}
the support set of (f, f{) N (g, f1) for which we have
W ={ulu e UNV AU, (f(u) x fi(w) N (g(u) x fi(u)) # 0} =
={ulu e UNV AU, (f(u) Ng(u) x fi(u) # 0} =
={ulue UNVNU, f(u) Ng(u) # 0}.
Thus W = W’. For any u € W’ we have
(fng, f)w) = ((fNng) x fi)(uxu) = (fNg)(u) x fi(u) = (f(uw) Ng(w) x fi(u) =
= (f(w) x fi(uw)) N (g(u) x fi(w) = ((f x fi)(uxu)) N ((gx f)(uxu) =
= (£, f)(w) N (g, f1)(w) = ((f, f1) N (g, f1))(w).

]

REMARK 30. A result similar with the one from Theorem 90 states the truth
of the formula
fx(f'ng)=(xfn(fxg)
and then, by Theorem 90, we get the result
(fng) x(f'ng) = xfHnfxg)nlgxf)n(gxg).

Like in Theorem 91, we can prove that

(fvf{mgll):(fvf{)m(f7gll)
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is true and then, by Theorem 91, we obtain

(fng, fing) = )N (fr91) N (g, f1) N (95 91)-

THEOREM 92. Let be the systems f : U — P*(S™), g : V — P*(S™),
U,V € P*(St™) and h: X — P*(S®), hy : X; — P*(S®), X, X, € P*(S™).

o) If U flu)c X, U g(u) C X and the set
uelU ueV

W = {ulu € UNV, fw) N g(u) £ 0}
is non-empty, then the systems ho (fNg), (ho f)N(hog) exist and we have
ho(fng) c(hof)n(hog).
b) We ask that U f(u) C {zlx € X N Xy, h(z) N hi(x) # 0} be true. Then the
systems (h N hy) o f (h o f)N(hyo f) are defined and the inclusion
(hVhy)o f C (hof)n(hiof)
s true.

PROOF. a) We shall use in the following the fact that Yu € U NV, we have
U < U U c U e
JEEf(U)ﬁg(U) z€f(u wef(ﬂ)ﬂg( ) z€g(u)
(in the left hand side of the inclusions we may have (}), wherefrom
U wx)c | r@)n | h)
z€ f(u)ng(u) zef(u) weg(u)

We show the existence of ho (fNg) :

U ¢ naw = (fwngw) c |J (fw) Ugw) =

ueW ueWw ueW
= U rwu Jew c |Jrwu Jew cx.
uceW ueW uclU ucV

We show the existence of (ho f)N(hog). Let us denote by W' its support set.
Because

W={ulucUNV,f(u)Ng(u) # 0} ={uucUNV, |J h) #0}C

z€f(u)Ng(u)
C{ulueUny, Uh Uh ) # (0} =
z€f(u) z€g(u)
— {ulu €U NV, (ho £)(w) N (hog)(u) £ 0} = W

we can see that the non-emptyness of W implies the non-emptyness of W', thus
(ho f)N(hoyg) exists.
We conclude that Yu € W,

(ho(fngwy = |J nma)c |J re)n J hw) =

zef(u)Ng(w) zef(u) zeg(u)

= (ho f)(w) N (hog)(u) = ((hof)N(hog))(w)
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b) Because

U f@) € {zlz € X N X1, h(z) N hy(2) # 0} C X,
ueU
U f(u) C{zlx € X N X1, h(z) Nhi(z) #0} C Xy
uelU

we get the existence of ho f and hy o f.
We shall use in the following the fact that Vu € U, from

U mnm)@ c | h), | dnh)@) c | m@
z€ f(u) z€ f(u) JLEf (u) z€ f(u)
(in the left hand side of the inclusions we may have () we infer
U (nh)@yc |J h@)n | m@)
z€ f(u) z€f(u) z€ f(u)

The set {z|z € X N X1,h(xz) N hy(z) # 0} is non-empty and represents the
support of h N hy, thus the hypothesis has implied the existence of (h N hy) o f.
Furthermore:

Vu € U, ((ho f)N(h1of))(u) = (ho f)(w) N (ko f)(u) = [ )N | ha(z) D
z€f(u) z€ f(u)
D) U Ohl )?é(b
z€f(u)

from the hypothesis, meaning that the support of (ho f) N (hy o f) is U.
Eventually, we obtain: Yu € U,

(hnh)o fHw) = |J (hNh)(x) C

€ f(u)
c Y n@n | m@) = o) n(hae f)(w) = ((hof) N (hiof))(u).
z€ f(u) z€ f(u)
O
13. Union

THEOREM 93. Let be the pseudo-systems f, g : Sim) P(g(”)) and the pseudo-
system fUg:S™ — P(SM) be defined by

Vu € S0 (fUg)(u) = f(u) Ug(u).
For U, V, the supports of f,g, we have that the support of fUg isUUV. If f, g are
systems, then f U g is a system.

PROOF. Suppose that f,g are systems. We have U # ) = UUV £ 0; U C
S0 and V. 8™ imply UUV < S Vu € U, f(u) ¢ S Vv € V, g(v) c S
imply

fw,ifueU\V
Yue UUV,(fUg)(u) = gu),if ue V\U c 8,
(wW)Ug(u),ifueUNV

Thus f U g is a system. O
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DEFINITION 47. The union of the systems f and g is the system fUg : UUV —
P*(S™) defined by

fu),ifue U\V
Yue UUV,(fUg)(u) = g(u),if u € V\U
fw)Ugu),ifuenV

IfUNV =0, then f U g is called the disjoint union of f and g.

REMARK 31. The union of the systems is the dual concept to that of intersec-
tion. It represents the loss of information (of precision) which in general follows
from the validity of one of two models. However, the disjoint union means no loss
of information.

We have also the special case when in the union fU g the system g is constant,
namely g : S — P*(S™), vu € St g(u) = X, with X € S™). In this situation
fUX: 8 — P*(S™M) is defined by

X, ifue SM\U
flwuX,ifuelU

The interpretation of fU X reads: when f is the model of an asynchronous circuit,
X represents perturbations independent of u.

EXAMPLE 22. Let be the system f : U — P*(SM™), U € P*(S™). If Qg =
{ut, ..., 0¥} C B, then fu : Uy — P*(SM), ., fur : Up — P*(S™) are the
restrictions of f at the initial values of the states p', ..., u* (see Example 20). We
have f = fn U...U f k.

EXAMPLE 23. In the union fUg we presume that UNV # 0 and f, g model two
different circuits, the first considered ’good, without errors’ and the second ’bad, with
errors’ (or ’bad, with a certain error’). The testing problem consists in finding
an input w € UNV such that f(u) Ng(u) =0 and after its application to fUg and
the measurement of the state v € (f U g)(u), we can say if x € f(u) and the tested
circuit is ‘good’ or perhaps x € g(u) and the tested circuit is ’bad’.

THEOREM 94. a) If f,g have race-free initial states and Yu € U NV, f(u) N
g(u) # 0, then f U g has race-free initial states.

b) If f,g have constant initial states and |J f(u) N U g(u) # 0, then fUg
uclU ucV

e S, (fu X)) = {

has a constant initial state.

PROOF. a) The hypothesis states the truth of the following properties
Vu € U,3pu € B", Vx € f(u), Ity € R,Vt < to,z(t) = p,
Yu € V,3u € B",Vx € g(u), Ity € R, Vt < tg, 2(t) = p,
Vu e UNV, f(u)Ng(u) # 0.

IF(U\V)U(V\U) #0, then Vu € (U\V)U(V \U) the statement is true because
it states separately for f and g that they have race-free initial states. If UN'V # (),
then we infer that p towards which x € f(u) U g(u) converges for u € UNV as
t — —oo depends on u only, but not on the fact that € f(u) or z € g(u). We
have that

Yue UUV,3u e B",Vz € (fUg)(u),Ity € R,Vt < tg,x(t) = p

is true.
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b) Because |J f(u)N U g(u) # @, in the statements
uclU ucV

Ju e B", Vu e UVx € f(u),3ty € R,Vt < to, x(t) = u,
Ju' € B",Vu € V,Va € g(u), Ity € R,Vt < tg,z(t) = i’

the two constants u and u', whose existence is unique, coincide. O

THEOREM 95. a) If f, g have final states, then f U g has final states.
b) If f,g have race-free final states and Yu € UNYV, f(u) Ng(u) # 0, then fUg
has race-free final states.

¢) If f,g have constant final states and |J f(u)N U g(u) # 0, then fUg has
uclU ueV
a constant final state.

THEOREM 96. If f,g have a bounded initial time (a fixed initial time), then
fUg has a bounded initial time (a fixed initial time).

PrOOF. We suppose that f,g have a bounded initial time and let w € U UV
be arbitrary. Then t{,t, € R exist, depending on u, such that

Vz € f(u),3pu € B",Vt < ty,x(t) = p,
Vo € g(u), Ip € BVt < ty,z(t) =

where, if in one of the previous statements f(u) = 0 or g(u) = 0, t, and t, may be
arbitrarily chosen. The time ¢, = min{t}, ¢, } satisfies the relation
Vo € f(u)Ug(u),Ip € BVt < to,x(t) = u.
(]

THEOREM 97. If f, g have a bounded final time (a fized final time), then fUg
has a bounded final time (a fixed final time).

THEOREM 98. For the systems f, g, we have (¢ U)o : UUV — P*(B"),

do(w), ue U\V

VueUU\/,(¢U7)0(u):{ Yo(u), ue V\U ,
do(u) Uvo(u), ue UNV

©UT)o= |J (@U o).
uceUUV
We have denoted by ¢g, g, (¢U)o the initial state functions of f, g, fUg and with
(©UT)g the set of initial states of fUg.

PROOF. We have three possibilities for an arbitrary u e UUV : w € U\ V,u €
VAU and v € UNV. I for example, u € U \ V, then

(@U)o(u) = {x(—0c0+0)|z € (fUg)(u)} = {z(—00 + 0)|z € f(u)} = y(u).
O

THEOREM 99. We suppose that f,g have final states. We have (¢ U )¢ :
UUV — P*(B"),

¢f(u)7 ’U,EU\V
(), we VAU
¢p(u)Unp(u), ue UNV

)

VuGUUV,(¢U’Y)f(U){
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©uDn);= |J (uysw),

ueUuVv
where the notations are obvious and similar to those from the previous theorem.

THEOREM 100. Consider the systems f : U — P*(S™), f; : Uy — P*(S™),
g:V — P*(S™), with U,U,,V € P*(S"™). If f C f1, then fUg C fiUg.

Proor. From U C U; we infer that U UV C U; U V. It is shown that Vu €
UUV,(fug)(u) C (f1Ug)(u) is true in all the three situations v € U\ V,u € V\U
andueUNV. O

THEOREM 101. We have
(fug)=frug.

PRrROOF. We remark that the equal supports of the two systems are (UUV)* =
U*UV*. Let be an arbitrary u € U*UV*. If u € U*\ V*, then f*(u) = (f*Ug*)(u)
and the fact that w € U \ V implies (f U g)(@) = f(u). Thus

(fUg)(u) ={Zlz € (fUg)(@)} ={Z|z € f(W)} = f(u) = (/" Ug")(w).
If w € V*\ U*, the situation is similar. At this moment suppose that u € U*NV*,
implying f*(u) Ug*(u) = (f*Ug*)(u), ue UNV, (fUg)(@) = f(7)Ug(a) and we

have
(fug) (v ={zlz € (fUg)(@} = {Zlz € fF(W) Ug(u)} =
={Zlz € f@)} U{Zlz € g()} = f*(w) Ug™(u) = (fFUg")(u).

In all the three cases the equality was proved to be true. O

THEOREM 102. Consider the systems f : U — P*(8(), g : V — P*(S™),
U,V € P*(St™). The systems (f Ug)~", f~1 Ug~"! have the supports equal to

X=JrwuJgw)

uelU ueV

and the following equality
(fug ™t =f"ug™

18 true.

PROOF. The support of (fUg)~tis |J (fUg)(u) and it coincides with X,
ueUuVvV

that obviously is the support of f~!' U g~!. For any x € X we have
(fug) ) ={uucUUuV,z e (fUg)(u)} ={ulucU\V,z e f(u)}U
Uulue VAU zegu)tU{ulueUnV,z e flu)}U{ulueUNV,z € g(u)} =
={ulue Uz e f(u)} U{uju e V,z € g(u)}
and, on the other hand,
),z € Uf( )\ Ug( )
g @), 7 € Ug( A Uf( )
[ @) ug (@), e Uf( )ﬂ U g(u)

uelU ueV

(ftug (@) =
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{ulue U,z e flu)} ze Uf( )\ Ug( )
- {ulue Vizeg(u)},z e Ug \Uf
{ulu e U,z € f(u }U{u|u€Vx€g }xe Uf )ﬂgvg(u)

We can check the equality from the statement of the theorem in the three cases:

ze U fw)\ Ugw),ze Uglw)\ U flw)andze U flwn Ugw). O
uclU ucV ucV uelU uclU ucV

THEOREM 103. Let be the systems f : U — P*(S™), g : V — P*(S™),
U,V e P*(S™) and f' : U — P*(S™)), U’ € P*(8™")). The common support
of (fUG) x 1 (fxfHU(gxf)is(UUV)xU =(UxU)U(V xU') and the
following equality

(fUg xf=(xf)ulgxf)
holds true.

PRrROOF. For Vu x v’ € (UUV) x U’ we have one of the following possibilities:
Case uxu € (U\V)xU =(UxU)\(VxU),

(fug) x f)uxu)=(fUg)u)x f'(u) = fu) x f'(u) = (f x f)(uxu)=
= ((f x f)Ugx f)(uxu);
(V\U) x U’ is similar;
Caseuxu e UNV)xU ={UxU)YN(V xU),
(fUg) x f)uxu)=(fug)(u) x f'(u) = (f(u)Ug(u) x f'(u) =
= (f(u) x f/(u)) U (g(u) x f'(@)) = (f x f)uxu)U(gx f)uxv)=
U (g x

) X
= ((F > 1) F)(ux ).

Case uxu' €

O
THEOREM 104. Let be the systems f U — P*(8M™), g:V — P*(SM),
fl U} — P*(S™)), with U,V,U, € P(S"™). IfUNU, £ 0, VNU, # 0, then
the common support of the systems (f Ug, f1), (f, f1) U (g, f1) is (UUV)NU; =
UNU)H)U(VNU,) and we have
(fug. fi)=(f. f)Ulg fi)

REMARK 32. The last two theorems have consequences concerning the truth of
the formulae

fx(ffugd)=(fxfHulfxg),
(fUg)x(fug) = xfHU(fxg)Ulgx f)U(gxg)
and of the formulae
(£, fivg) = (f, f1)) U (f, 1)

(fUg, fivg) = (£ f1)U(f.01) U9 f1) U(g.91)-
THEOREM 105. Let be the systems f : U — P*(S™), g : V — P*(S™),
U,V € P*(St™) and h: X — P*(S®), hy : X; — P*(S®), X, X; € P*(S™).
a) Suppose that U fw)U U g(u) € X. Then ho(fUg), (ho f)U(hog) exist
ueV

and the following equalzty
ho(fug)=(hof)U(hog)

18 true.
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b) If UUf(u) C X, gUf(u) C X then the systems (hUhy)o f, (ho f)U(hio f)

ue u
are defined and we have
(hUhy)o f=(hof)U(hiof)
Proor. a) As |J (fug)(w) = U fuv)U U g(u) C X, we infer the existence
uelU ev

ueUuVv

of ho(fUyg). The inclusions |J f(u) C X, |J g(u) C X show that ho f,hog,(ho
uclU ucV

f)U(hog) are also defined and the common support of ho(fUg) and (ho f)U(hog)
is U U V. The next equalities are true:

U hl@),ueU\V

e f(u)
VueUUV,(ho(fUg)w)= ] Mha) = IGLQJ(u)h(x),uGV\U _
2€(fug)(w) U hE,ueUlnV
€ f(u)Ug(u)
U hx),ucU\V
e f(u)
— U hz),ueV\U
U }:&9)(18 U h@),uelUnV
wef(u) reg(u)
(ho f)(u),ucU\V
= (hog)(u),ue V\U = ((ho f)U(hog))(u)
(ho f)(w) U (hog)(u),ueUNV

b) From the hypothesis U f(u) € X U Xy, thus (hUhq) o f exists. On the

other hand ho f, hyo f, (ho f) (hy o f) exist themselves. The common support
of the systems (hUhy)o f,(ho f)U (hy o f) is U. We can see that

VueU, (hUh)ofw) = | (hUm)(@)= (] hx)u | )=

z€ f(u) z€ f(u) zE€f(u)

= (ho f)(w) U(hro f)(u) = ((ho f)U (hio f))(u).

14. Morphisms

DEFINITION 48. Let be the systems f : U — P*(S™), U c St and f': U’ —
P80 U ¢ 8™). We call the morphism. (of systems) from f to f', and we
denote it by (w,Q) : f — f', a couple of functions w : U — U', Q : P*(§™) —
P*(S (”/)) with the property that the following diagram is commutative

v Lo oprsm)
wl 1 Q
REMARK 33. The existence of a morphism f — f' shows that f’ reproduces

the properties of f. The origin of the word ‘morphism’ is the greek word 'morphe’
(Le Petit Robert) which means form’. Thus f' is another form of f.
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EXAMPLE 24. For any system f, the following diagram

U L prst
ly | L 1pe(so)

v L prsm)

is commutative. It defines a morphism (1u, 1p«(gm))) : f — f, called the identical
morphism. The usual notation for the identical morphism is 1y.

EXAMPLE 25. Define the functions
w:U—-U"VueUuw(u) =1,
Q: P*(8™) = P*(SM),vX € P*(SM),Q(X) = X*.

Because the following diagram

u L opr(so)

w | 1 Q

Ur LS prs)
18 commutative

Vue U, (f* ow)(u) = f(w(u)) = (@) = {T|lz € f(w)} = Qf(u)) = (2o f)(u),
we infer that (w, Q) : f — f* is a morphism of systems. We remark that a morphism
f*— f can be defined in the same manner.

EXERCISE 1. Let be the system f : S — P*(S™). The reader may want to
construct the morphisms f — f', where f' is one of the following systems:

a) [ 8t — P(SM)) vu e SO, f'(u) = {T|x € f(u)};

b) £ 8m) — P*(SM) Yy € S f'(u) = {a- x|z € f(u)}, where a € S and
we have used the notation

(a-2)(t) = (a(t) - 21(2), ., a(t) - wn(t));
¢) fr:80m — Pr(S™) vu e S f'(u) = {aUz|x € f(u)}, where a € S and
we have used the notation

(aUx)(t) = (a(t) Uz1(t),...,a(t) Uz, (t));

d) f: 8 — P*(SM) vu € S f'(u) = f(u)NX, where X C S™ satisfies
Vu € St flu)N X #0;

e) f: 80 — pP*(SM) vu € S f'(u) = f(u) U X, where X C S™;

f) f/ P SmA) P*(S(”)),V(ul, -'-7u7mum+1) € S(erl);f/(ula -naumaum—i-l) =
f(U17~-~7U7n);

g) f:8m=1 — P*(SM) Y € ST (ug, oy Uiy ooy ) = F(ULy ery Uiy oony U
wherem > 1,4 € {1,...,m}, f does not depend on u; and we have used the notation
u; to show the fact that the coordinate u; is missing.

Other morphisms f X f' — f, f < f' = ', (f,f)— f, (f, ') — [ exist, that
the reader is invited to write.

THEOREM 106. Let be the systems f : U — P*(S™), U € P*(S(™), f':
U — P*(S™)), U e P*(St™)), f7 . U" — P*(S"")), U" € P*(8™")) and the
morphisms (w,Q) : f — f', (W', Q) : f' — f”. We have the morphism (w',) o
(w,Q): f — f" defined by

(14.1) (W, ) o (w,Q) = (W ow,Q o),
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where, in the right side of (14.1), 'o’ is the usual composition of the functions.
PrOOF. The hypothesis states the commutativity of the diagrams

v L prs)
wl 1 Q
U’ L P* (S(n/))
w/ l l QI
UII f_”> pP* (S(n//))
and the conclusion refers to the commutativity of the diagram

v L prsm

wow] 100
ur 2L prsn)y
From the hypothesis we infer the following:
Vu e U, (f" o (W' ow))(u) = ((f" ow') ow)(u) = (2 0 f') ow)(u) =

= (@ o (f ow))(u) = (o (Qo f))(u) = (' 0 Q) o f)(w).
Thus (W ow, ¥ 0 Q) : f — f” is a morphism of systems. O

DEFINITION 49. If the systems f, f' have the property that the morphisms

(W, Q) : f = f, (W, Q) : f' — [ exist such that

(W', Q)0 (w,) =1y,

(W7Q) © (w/7Q/) = 1f’7
then they are called isomorphic and the morphisms (w, ), (W', Q') are called the
tsomorphisms.

REMARK 34. The systems f and f* are isomorphic. In Exercise 1, f is iso-
morphic with the systems f' from a), f) and, if f does not depend on w;, then g)
gives another example of system f’ that is isomorphic with f.

The asynchronous systems form a category Sys: its objects are the systems
and its morphisms are defined like in Definition 48. For any f € ObSys the unit
morphism is 1y and for any morphisms (w,Q) : f — f', (W', ) : f" — f", their
composition is defined like in (14.1).

We end this section by showing a way of constructing morphisms of systems
suggested by the work [21] of Moisil. Let © : B™ — B"™ be a function. It induces
the functions 7 : S — S 7. p*(S()) — P*(S™M) defined as:

vt e R,z € S 7 (x)(t) = m(x(t)),
VX € P*(S™), 7(X) = {F(x)|x € X}.

The couples (1y,7) are called morphisms under a given input. When mis a
bijection, they become isomorphisms.



CHAPTER 5

General properties of the systems

Many sets and functions related to systems and various properties of sys-
tems are defined and analyzed. Particular types of systems, important for the
author’s treatment are described too. Several definitions are presented for the non-
anticipation and injectivity, together with long comments and results for them.

1. Constant initial state function. Initialization

DEFINITION 50. The system f : U — P*(S™),U € P*(S(™)) has a constant
initial state function if
ke {1,..,2"},3ut € B, ..., 3uF € B",Vu € U, ¢y(u) = {u', ..., u*}.

REMARK 35. The constancy of ¢, means that we know among what values we
can search, Yu € U, the initial states of f. The initialization, i.e. the property
of a system of having a (constant) initial state is given by any of the equivalent
statements

Ju e B", Vu e UVz € f(u),Ity € R,Vt < tg,x(t) = u,
Ju € B",Vu € U, ¢o(u) = p
and it represents one of the most important properties of the systems.

THEOREM 107. Let be two systems f, g with the property f C g.

a) If the two initial state functions ¢g,v, are constant, then the inclusion of
sets ¢y C 7 takes place.

b) If g is initialized, then f is initialized also and ¢y = v, i.e. the two initial
states coincide.

PROOF. a) Special case of Theorem 39.
b) In the inclusion ¢y C 7, ¢ is non-empty and 7, has one element, thus the
equality ¢y = v, holds true. O

THEOREM 108. If f has a constant initial state function ¢y (if f is initialized),
then f* has a constant initial state function ¢ (then f* is initialized) and ¢ =

{Blp € ¢o} is true (b = ¢ is true).
Proor. We have
¢o = {n! s iy = Vu e U {p' o 1} = {2(—00 + 0)|x € f(u)}
= VYuec U {ut, ..., 1} = {x(—c0 + 0)|z € f(u)}
= Vue U {ul, ... pb} = {a(—c0 + 0)|z € f(u)}
= Vue U {ul, ..., uk} = {z(—00 + 0)|z € f*(u)} <= {ul, ..., ik} = &5
(|

59
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THEOREM 109. If the systems f : U — P*(S™) U € P*(S"™) and f' :
U — P*(SM)) U e P*(S™)) have the initial state functions Bo, ¢y constant,
then their product f x f' has the initial state function (¢ x ¢')o constant. If f and
f' are initialized, then f X f' is initialized too.

PRrOOF. From Theorem 61 we have (¢ x ¢')g = @, X ¢ the Cartesian product
of sets. If ¢, and ¢ have one element, then their Cartesian product ¢, x ¢, has
one element. O

THEOREM 110. Suppose that the systems f : U — P*(S™) and f] : U, —
P*(8M)), U, U € P*(S"™) satisfy U N U, # 0. If they have the initial state func-
tions constant, then their parallel connection (f, fi) has the initial state function
constant. In particular, if f and f{ are initialized, then (f, f1) is initialized.

THEOREM 111. The systems f and h : X — P*(S®), X € P*(S™) are given
such that the inclusion |J f(u) C X is true. If h has the initial state function

uelU
constant, then h o f has the initial state function constant. If h is initialized, then
ho f is initialized too.

PROOF. Denote by n, : X — P*(BP) the initial state function of h and by
8o : U — P*(BP) the initial State function ho f. The hypothesis states the existence
of k€ {1,...,2P} and v!,...,v* € BP, such that

Vo € X, no(x) = {y(—o0 +0)|y € h(x)} = {v', ..., "},

wherefrom we infer, by Theorem 72, that

VueU,do(u) = | J molx) = {v', ... V")
z€f(u)

The second statement follows, but this result was already proved in Theorem 68. [

THEOREM 112. The systems f : U — P*(S™) and g : V. — P*(S™) with
U,V € P*(S'™) are given, satisfying the property that the set

W =A{ulu e UNV, f(u) Ng(u) # 0}

is non-empty. If their initial state functions ¢q,vy are constant, then the initial
state function (¢Ny)o of the intersection fNg is constant. If one of f, g is initialized,
then f N g is initialized too.

PrOOF. We apply Theorem 85, wherefrom we get (¢N7y)o = ¢y N~yq. If in this
equality one of the sets ¢, and v, has one element, then the intersection ¢y N 7y,
has one element, thus the system f N g is initialized. O

REMARK 36. Let be the systems f and g. If ¢, and v, are constant, then in
general the union f U g does not have the initial state function (¢ U)o constant
(see Theorem 98). But if f,g are initialized with ¢y = 7y, then fU g is initialized
with (¢ U)o = @9 = 9. A result of the same nature was proved in Theorem 9/,

b).
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2. Autonomy

DEFINITION 51. We call the autonomous system, any of the following con-
cepts:
a) the system f : U — P*(S™), U € P*(S™)) given by the constant function

3X € P*(S"),Yu e U, f(u) = X;

b) the system f in the special case when it has exactly one input, |U| = 11;

¢) the set X € P*(S(M).

Implicitly, by autonomous system further we mean a). However, when signif-
icant differences occur among a), b), c), in order to avoid misunderstandings, we
specify which concept of autonomy we use.

NOTATION 16. The autonomous system f is generally denoted by X, or f =
X according to our convention of identification of the constant function with the
constant.

REMARK 37. The autonomous systems may be considered to be without input
since the states © € X are the same for all uw € U. Whence one of the meanings of
Definition 51, ¢).

EXAMPLE 26. The total system defined by S™ : Sm) — pP*(S§™) vy €
S§m) ) (y) = SM) s autonomous.

EXAMPLE 27. The system f : S(™ — P*(S),Yu € S f(u) = {z]z €
S,x(t — 0)-z(t) = 0} of the monotonous decreasing functions is autonomous. Each
of its states switches at most once from 1 to 0.

EXAMPLE 28. Let be the system f : S(™) — P*(S) defined by the inequalities
xt—0)-zt)< (] ().

EE[t,t+6,]
wt-0)2m< () 0,
€t t+6 ]
where 6, > 0,67 > 0. Its states x € S are called absolutely inertial and have the
property that after switching from 0 to 1 they remain 1 more than 6, time units and

after switching from 1 to 0 they remain 0 more than 6y time units. The system f
18 autonomous.

EXAMPLE 29. The equation

EE[tt+6r)

with &, > 0, defines an autonomous system f : SU™ — P*(S) with the states x € S
having x(—oo + 0) = 0 and 1-pulses of length < §,.

THEOREM 113. Let be the autonomous system X € P*(S™).
a) The property of existence of the initial state

Ve € X,3u € B", 3ty € R, Vit < tg,z(t) = p
holds true.
Y
[11].

| is the usual notation for the number of elements of a set; Definition 51, b) was given in
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b) The existence of the race-free initial states coincides with the existence of
the constant initial state and is given by

Ju € B", Va € X, Ity € R,Vt < to,z(t) = p.
PROOF. These properties are the same as (2.1),...,(2.3) from Ch. 4, where the

quantification Yu € U is missing because the states z € X do not depend on the
input w. (]

THEOREM 114. If f is autonomous, in the sense that X € P*(S™) exists with
Yu € U, f(u) = X, then
a) f has an unbounded initial time

Ve € X,3p € B", 3ty € R,V < to, z(t) = p;

b) the existence of both the bounded initial time and of the fized initial time
coincide with
Jto € R, Va € X, 3pu € B, Vt < to,z(t) = p.

PROOF. These are the properties (3.1),...,(3.3) from Ch. 4, where the quantifi-
cation Vu € U is missing. O

THEOREM 115. Suppose that f is an autonomous system, f = X. The following
equivalencies hold:
a) [ has initial states and an unbounded initial time iff

Ve e X,3u € B", 3ty € RVt < tg, x(t) = u;
b) f has initial states and a bounded initial time iff
Jto € R, Va € X, 3pu € B, Vt < to,z(t) = p;
¢) f has race-free initial states and an unbounded initial time iff
Ju e B, Vo € X, 3ty € RVt < to,z(t) = p;
d) f has race-free initial states and a bounded initial time iff
Ju e B", 3ty € R,Vx € X, Vit < to,z(t) = p.

THEOREM 116. The initial state function of the autonomous system f is con-
stant and equal to the set of the initial states.

PROOF. By hypothesis there is the set X such that Vu € U, f(u) = X. From
the definition of ¢, we get

Vu € U, ¢g(u) = {x(—00 + 0)[x € f(u)} = {x(—00 +0)|z € X} = 6.
O

THEOREM 117. The autonomous system f : U — P*(S™), U c S™) is given.
Then f* is autonomous.

PROOF. The system f* : U* — P*(S™) is defined by Vu € U*, f*(u) = {Z|x €
f@)} = {T|x € X} = X*, where we have considered that Yu € U, f(u) = X. O

THEOREM 118. If f is autonomous, then f~! is autonomous too.

PROOF. If Vu € U, f(u) = X, then Vo € X, f~1(2) = U. O

THEOREM 119. The Cartesian product and the parallel connection of the au-
tonomous systems are autonomous systems.
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ProOF. The hypothesis states that f : U — P*(S™),U c S, f : U —
P*(S™)), U ¢ 8" are two systems with Vu € U, f(u) = X and Vo' € U’, f'(u') =
X', where X € P*(S™), X' € P*(S()) are some spaces of functions. We get

Vuxu eUxU,(fxfuxu)=flu)x f'(u)=X x X'
The situation is similar in the second case. O

THEOREM 120. Let be the systems f : U — P*(S™), U c S, h: X —

P*(S®), X ¢ S, where |J f(u) C X.
uclU
a) If f is autonomous, then ho f is autonomous.

b) If h is autonomous, then ho f is autonomous.
¢) If f and h are autonomous, then ho f is autonomous.

PROOF. a) By hypothesis there is X; € P*(S) such that Vu € U, f(u) = X;
and X C X;i. In these circumstances we have

Vu e U, (ho f)(u) = U h(z) = U h(zx).

z€ f(u) reX1
b) there is Y € P*(S®)) such that Va € X, h(z) =Y. Then

Vue U, (ho f)(u)= | h(z)=Y.
z€f(u)
O

THEOREM 121. Let be the autonomous systems f,g. If f N g exists, then it is
autonomous.

PrOOF. When X, X; exist such that Vu € U, f(u) = X, Yu € V,g(u) = Xi,
UNV # @ and X N X # 0, we have
Yue UNV,(fNg)(u) = f(u) Ng(u) = X NX;.
]

THEOREM 122. Let be the systems f,g. If one of the following requirements of
autonomy is fulfilled:

a) IX € P*(SM),Vu € U, f(u) = X,Yv € V,g(v) = X;

b) U =V and 3X € P*(S™) VYu € U, f(u) = X,3X" € P*(S™),vVu €
U,g(u) = X',

then f U g is autonomous.

3. Finite input space
DEFINITION 52. The system f : U — P*(S™) U € P*(S™) is said to have
a finite input space (or a finite input set) if the set U is finite.
THEOREM 123. If |U| = k > 1, then f is the disjoint union of k autonomous
systems (in the sense of Definition 51, b)).

PROOF. By hypothesis U = {ul,...,u*} and define the autonomous systems
fa:Ug— P*(S™) by
Ug = {u},
Vu € Uy, fq(u) = f(u),
q = 1, k. We have obtained that f = f; U... U fi, which is a disjoint union. O




64 5. GENERAL PROPERTIES OF THE SYSTEMS

REMARK 38. We may interpret the admissible inputs w € U as commands.
Then the finitude of U obviously shows the fact that the circuit may be run in a
finite number of ways.

The fact that the systems with finite input space are unions of autonomous
systems is a good reason to consider the autonomous systems be important in the
analysis of the systems.

If g has a finite input space and f C g, then f has a finite input space too. If
f has a finite input space, then f* has the same property. The Cartesian product
of systems with a finite input space is a system with a finite input space. If the
parallel connection (f, f1) exists and f, fi have a finite input space, then (f, f1) has
a finite input space too. If f has a finite input space and ho f exists, then ho f has
a finite input space too. If f has a finite input space and f N g exists, then fNg
has a finite input space too. If f and g have finite input spaces, then fU g has the
same property.

4. Finite and deterministic systems

DEFINITION 53. The system f : U — P*(S™),U € P*(S™) is finite if it
satisfies the property that Yu € U, f(u) has a finite number of elements and it is
infinite otherwise. The system f is deterministic if Yu € U, f(u) has a single
element and it is non-deterministic otherwise.

REMARK 39. Unlike the previous section where the word ’finite’ characterized
the input set, here ’finite’ refers to the sets of possible states. This is the implicit
sense of the attribute ’finite’ given to a system.

When the system is given under the implicit form, the finitude means that the
equations and inequalities have a finite number of solutions and determinism means
that the solution is unique.

Finitude is useful when during modeling we work with ’the most favorable case’,
the most unfavorable case’, 'the most frequent case’ etc.

The deterministic systems can be identified with the U — S™ functions, as
we have already done. Such models show a perfect knowledge of the behavior of a
circust.

ExAMPLE 30. The system f: S — S defined by

Vu € S, fu)(t) = / Doru

is deterministic, where we have denoted

t
Devat — 0,if |(—o0,t] N supp Do1ul| is even
57 1,if |(—o0,t] N supp Doyul is odd

and 0 was considered to be an even number. In order to detect the correctness of
this example, first let us remark that Vt € R,Vu € S, the set (—oo,t]N suppDo1u
is finite. Thus it makes a sense to refer to its parity. Second, for all u € S, the

t
function int: [ Doiu belongs to S indeed.
—0o0
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ExXAMPLE 31. For the Boolean function F' : B™ — B, we denote by 0;F :
B™ — B, j € {1,...,m} its Boolean derivatives

YA e B™, GJF()\) = F(/\l, ey 050, )\m) ® F()\l, S P /\m)'
J J

The system f: S — S defined by
Yu € S(m),f(u)(t) = (O F(u(t)), ..., Om F(u(t)))
s deterministic.
THEOREM 124. If f is a finite system, then it has a bounded initial time.
PROOF. In the property of existence of the initial state with unbounded initial
time
Yu € UVz € f(u),3Ip € B™, Ftg € R, Vt < to, z(t) = p,

we fix an arbitrary € U and suppose that f(u) = {x!,...,z*}. Then ', ..., u* € B"
and t},...,t5 € R exist such that

vt <t at(t) = pt, .V < th 2R () =
Since the number tg = min{#},...,tk} depends only on u, it satisfies
Vo € f(u),Iu € B™, Vit < to,z(t) = p.
Because u was arbitrarily chosen, we conclude that
Yu € U, 3ty € R,Vx € f(u),3u € B",Vt < to,z(t) = p.
O

THEOREM 125. Let f be deterministic. Then it has race-free initial states and
¢o satisfies Vu € U, |¢o(u)| = 1.

PRrOOF. In the statement concerning the existence of the initial values of the
states of f we have

Yu € UVz € f(u),3p € B™, Ity € R, Vt < to,z(t) = p.

Since Vz € f(u) and Ju € B™ commute, f has race-free initial states. We have, of
course,

Vu € U, [do(u)| = {z(—00 +0)[z € f(u)}| = 1.
O

THEOREM 126. Let be the systems f : U — P*(S™), g : V — P*(S™),
U,V € P*(SU™) with f C g. If g is finite, then f is finite too. If g is deterministic,
then f is deterministic also and f = g.

PRrOOF. For Vu € U, f(u) has at most as many elements as g(u). If Vu € V, g(u)
has exactly one element, then Yu € U, f(u) has exactly one element and f(u) =

g(u). O

THEOREM 127. If the axiom of choice is true, then any system g : V. —
P*(S™), V e P*(S™) includes a finite (a deterministic) system f : U —
P*(S(’n))7 Ue P*(s(m))
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PrOOF. We take U C V arbitrarily and non-empty. For any u € U, the axiom
of choice allows choosing from the set g(u) some = and defining, in this manner, a
selective function f(u) = {x}. The system f is deterministic and Vu € U, f(u) C
g(w). The union of a finite number of such deterministic systems fi,..., fr Cgis a
finite system f; U...U fr C g having the domain UU...UU =U. (]

THEOREM 128. If the system f is finite (deterministic), then its dual f* is
finite (deterministic) too.

PRrROOF. For any u € U, the finite sets f*(u) = {Z|z € f(u)} and f(u) = {z|x €
f(u)} have the same number of elements. O

THEOREM 129. Suppose that the systems f : U — P*(S™), U € P*(S™),
U — P<(8")), U e P*(S")) are finite (deterministic). Then the system
fx [ is finite (deterministic) too.

PRrOOF. This follows from the equality

Vuxu' € Ux U |(f x f)(uxu)| = |f(w) x f'(@)] = |f)]- [ ()]
O

THEOREM 130. Let be the finite (deterministic) systems f : U — P*(S™),
fl Ul — P*(SM™), U, U, € P*(S™) with UNU, # 0. The system (f, f]) is
finite (deterministic).

THEOREM 131. Consider the finite (deterministic) systems f : U — P*(S™),
Uec P (S™), h:X — P(SP), X € P*(S™) with |J f(u) C X. Then ho f is

uelU

finite (deterministic).

PrROOF. In the formula
YueU,(hof)u)= | hx)
€ f(u)

the finite union of finite sets is a finite set. O

THEOREM 132. If one of the systems f : U — P*(S™), g : V. — P*(S™),
U,V € P*(S'™) is finite (deterministic), then Ju € U NV, f(u) Ng(u) # 0 implies
that fNg is finite (deterministic); and if both systems are finite, then fUgq is finite.

ProOOF. If f is finite, then Yu € U NV, the set (f Ng)(u) has at most as many
elements as f(u), wherefrom we infer the first statement of the theorem. If f, g are
both finite, then Yu € U UV, (f U g)(u) represents a finite set or the union of two
finite sets asu e U\ Vyu e V\U orueUNV. O

THEOREM 133. The system f is autonomous and finite (deterministic) iff 3X €
P*(S™) finite (with one element) such that Yu € U, f(u) = X.

Proor. Obvious. O
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5. Ideal combinational systems

NOTATION 17. Let be the Boolean function F : B™ — B" and the number
d € R. Denote by Fy: 8™ — S the deterministic system defined by

Vu e 8 Ey(u)(t) = F(u(t — d)).

In the special case when d = 0 we write F instead Fy.

REMARK 40. This notation was previously used under the form: if F: B — B,
YA€ B, F(\) =\, then F: S — S is the system

Vu € S,u(t) = F(u)(t) = F(u(t)) = u(?),
while for F : B2 — B, Y\ € B2, F()\) = A\; U Ay, we have the system F : S@) — S,
Vu € S@ (ur Uug)(t) = Fu)(t) = F(u(t)) = u(t) Uua(t)

etc.

DEFINITION 54. The deterministic system f : U — S U € P*(S(™) is called
an tdeal combinational system if there are the Boolean function F : B™ — B”
and the number d € R such that f C Fy, in other words if

Vu € U, f(u)(t) = Fa(u)(t).

In this case we say that f is generated by the function F and F is called the
generator function of f. If d > 0, then it is called the transmission delay for
transitions, or, shortly the delay of f and we also say that f has the delay d.

REMARK 41. The ideal combinational systems are uni-valued (usual) functions,
where the correspondence between the input u and the state x is given by the equation
z(t) = F(u(t — d)). These are the models of the combinational circuits.

In general, an ideal combinational system has several generator functions and
several parameters d (for example if F is constant).

Due to its determinism, an ideal combinational system has a bounded initial
time and race-free initial states. Moreover it fulfills all the properties of the finite
systems from the Section 4.

It is not necessary in Definition 54 to ask that d > 0; this property is one of
non-anticipation.

EXAMPLE 32. Recall Fxamples 11, 12, 18 and 15 from Ch. 3. These pseudo-
systems induce ideal combinational systems, in the sense of Definition 54, with the
generator functions: the identity 1gm, the projection m; : B™ — B, j € {1,...,m},
the constant function p : B™ — B"™, plus the general case. In FExample 31 the
derivative OF : B™ — B™ Y\ € B™ 0F(\) = (01 F(\), ..., 0mF (X)) of the function
F:B™ — B occurred, generating an ideal combinational system.

THEOREM 134. Consider F': B™ — B"™ and d € R. Then
Yu e ST Fy(u) = F(uor%) = F(u) o 1.

PROOF. For any u € S(™),

Fuot®)(t) = F((uor)(t)) = F(u(t — d)) = F(u)(t — d) = (F(u) o 79)(t).
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THEOREM 135. Let f C Fy be an ideal combinational system. The equation
Yu € U, ¢pg(u) = F(u(—oo +0))
s true.

THEOREM 136. A subsystem of an ideal combinational system is ideal combi-
national.

PrOOF. From g C F; and f C g we infer f C Fy. ]
THEOREM 137. (F*)g = (Fy)*

ProoF. For any u € S™ we have

(F)g(u) = F*(uo7d) = Fluo7d) = F(uoTd) = Fy(T) = (Fy)*(u).
O

NOTATION 18. The previous theorem allows us to use the notation Fj for any
of (F*)q and (Fg)*.
THEOREM 138. If f C Fy, then f* C Fj.

PROOF. The hypothesis states that f : U — S satisfies Vu € U, f(u) = Fy(u)
wherefrom Vu € U*, f*(u) = f(@) = Fy(T) = F (u). O

THEOREM 139. The inverse of the system Fy : S — S satisfies
Ve e 8™ (F) Ya) = F Y (xor™%).
PROOF. In the equality
Flu(t — d)) = x(t),
where u € Sz € S we make the substitution ¢’ = ¢t — d and obtain
F(u)) =a(t' +d) = (xom=)(t).

Thus
Vo e S™, (Fy) ™ (x) = {ulu € S, Fy(u) = 2} =
={ulue S Fu)=zor % = F Y (zor™ 9.
]
THEOREM 140. Let be f : U — P*(S™), U € P*(S(™), f/: U — P*(8"")),
U e P*(S™)), F:B™ - B", F/:B™ — B" andd € R. If f C Fy,f' C F),
then f x f C (F x F')q, where we have denoted by F x F' : B™ x B™ — B" x B"'
the function

V(A X) € B™ x B™ (F x F))(\,N) = (F(\), F'(\)).

PrOOF. The fact that f x f’ C Fy x F; follows from Theorem 63 and further-
more we have
Vuxu' € ST x ST (Fyx Fi)(uxu') = Fy(u) x Fy(u') = F(uor®) x F'(u' o7%) =
=(FxF)(uor? xu or?) = (Fx F)((uxu)or?) = (F x F)g(uxu).
(|
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THEOREM 141. The systems f : U — P*(8™), fi : U} — P*(S")), U,U]
P*(S™)) are given with UNU{ # O as well as the Boolean functions F : B™ — B™,
F/:B™ — B" and the numberd € R. If f C Fy, f| C Fly, then (f, f}) C (F, F})a,
where we have used the notation (F, Fy): B™ — B™ x B" for the function

VA € B™, (F, F{)(A) = (F(A), F{(N)).

THEOREM 142. For the functions F' : B™ — B", H : B" — BP and the

numbers d € R, d' € R the following property
HyoFy=(HoF)aa

holds true, where H o F' : B"™ — BP is the usual composition of the functions.

PROOF. We remark first of all that the support of Hy is S, thus Hy o Fy is
defined. By taking into account Theorem 134, we note that Yu € S we have

(HaoFa)(u) = Ho (Fa(u)) = Ha (F(uor®)) = Hy (F(u)or) = H(F(u)or?or®) =

= H(F(u) o) = H(F(u)) o 7% = (H o F)(u) o 7% = (H 0 F) g1 (w).
O

THEOREM 143. The systems f : U — P*(S™), U € P*(S"™), h : X —

P*(S®), X € P*(S™) are given and the requirement is |J f(u) C X. Let be also
uelU
the functions F' : B™ — B", H : B" — BP and the numbers d € R, d € R. If

fCFd and h C Hy, thenhofc (HOF)d+d/.

PrOOF. We infer

hof h o F; (Theorem 74, a))
Hy o Fy (Theorem 74, b))

(H o F)gya (Theorem 142).

N N

O

THEOREM 144. Consider the systems f : U — P*(S™) and g : V — P*(S™),
U,V € P*(S™) satisfying f C Fy,g C Fy.

a) IfUNV #£0, then f Ng exists and f Ng C Fy.

b) fug C Fy.

REMARK 42. The morphisms characterizing the ideal combinational systems
are those satisfying the commutativity of the diagrams

v Losm
wl 1 Lgem
gim)  Fa,  g(n)

where w is the canonical injection.
The autonomy of these systems is given, for example, by the constant Boolean
function.
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6. Self-duality
DEFINITION 55. The Boolean function F : B" — B" is called self-dual if
YAe B™ F(\) =F*(\)

18 true.

EXAMPLE 33. Two self-dual F : B — B functions are F(\) = X and F(\) = X,
X € B and four F : B> — B self-dual functions are: F(X\) = A1, F(\) = A\, F(\) =
Ao, F()\) = )\_2, A € B2. The function F' : B3 — B, F()\l,)\z,)\g) =AM D AP A3 is
self-dual too.

DEFINITION 56. The set U is called self-dual if it satisfies one of the equivalent
conditions:

a) U=U%

b) Vu,ue U =1 e U.

EXAMPLE 34. The set S(™) is self-dual.

EXAMPLE 35. Let j € {1,...,m} and 6§ > 0 be fized. The set
U={ulueS™, uj(t—0)-u;(t) < (| u(&), w;(t=0)-u;() <[] u(€)}

€t t+0] £E[tt+6]

is self-dual.

LeMMA 1. Consider the system f: U — P*(SM) U € P*(S™)). The follow-
ing statements are equivalent:

a) f=f*

b)) U=U* anquGUVxef( ), T € f(u);

) U=U" andVu e U, f(u) ={Z|z € f(u)};

d) U =U* and the diagram

v L pr(st)
w | 1 Q

v L prsm)
is commutative, where we have denoted

Vu € U,w(u) =1,

VX € P*(S™), Q(X) = X*,
i.e. (w,Q): f— f is a morphism of systems.
PROOF. a) = b) U = U* is true and, on the other hand, Yu € U,Vz €

fu),z € {yly € f(w)} ={yly € f(u)} takes place.

b):>c)Vu€UVx€f(_)T€f()thusf ) =A{zlz € f(w)} C {z|T €
w)} = {Tlx € f )}. Conversely, Vu € U,Vz € f(u) we get T € f(u), thus
hwef )} C f(a

c)=d)is 0bv10us.

d) = a) Yu € U, f(u) = f(w(u)) = (fow)(u) = (o f)(u) = Qf(v) =
{Z|z € f(u)}, in other words Yu € U, f(u) = {Z|z € f(uw)} = f*(u). O

DEFINITION 57. The system f is called self-dual, or symmetrical (in the
rising-falling sense) if one of the previous equivalent properties a),...,d) is true.
Otherwise, f is called asymmetrical (in the rising-falling sense).
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REMARK 43. The self-duality of f states that the form of x under the input
u coincides with the form of T under the input T and the terminology of rising-
falling symmetry is due to the fact that while x(t) switches at the time instant t in
the rising (falling) sense, T(t) switches at the time instant t in the falling (rising)
sense: Yu € U,Vz € f(u),Vi € {1,...,n},

Jii(t — 0) . J)i(t) = J)i(t — 0) . J}i(t), Jii(t — 0) . .I}i(t) = J)i(t — 0) . J)Z(t)
EXAMPLE 36. Let F': B™ — B" be a self-dual function and d € R. The ideal
combinational system Fy: S — S s self-dual.
EXAMPLE 37. The S®® — S system defined by the following inequality
up(t) - ue(t) < z(t) < wi(t) Uus(t)

is self-dual. This is easily seen from Lemma 1, b): if x satisfies the inequality, then
T satisfies

ur(t) - uz(t) < 2(t) < ui(t) Uua(?).
EXAMPLE 38. The S — P*(S) system
N w®<a) < U
¢€ft—d,t—d+m] ¢€ft—d,t—d+m)

is self-dual, where 0 < m < d. Like previously, this is seen from Lemma 1, b): if x
satisfies that inequality, then T satisfies the following inequality

N wO<=00< | w©.

e€t—d,t—d+m) ect—d,t—d+m]

THEOREM 145. If f is self-dual, then ¢, = ¢y and ©¢ = O, where we have
denoted by ¢, OF the initial state function and the set of the initial states of f*.

PROOF. We have U = U™ and Yu € U,
u) ={z(—c0+0)|z € f(u)} = {z(—c0+ 0)|z € f*(u)} = ¢5(u)

THEOREM 146. If f is self-dual, then f* is self-dual too.

PrOOF. From U = U* we get U* = (U*)* and from f = f* we infer f* =
(f). 0

THEOREM 147. If f is self-dual, then f~' is self-dual too.

PrOOF. We denote by X = |J f(u) the support set of f~1. We prove that X
is self-dual: Vz, et

ze | Jfw) = uelze fluy= Fuelzec flu)y= Fuecl,ze f(u) =
uelU
= JuelUTe f(u)y=ueclU7ec flu)=7c | f(u)
uelU
For any x € X we have

(f @) = () Ha) = (F7) (@)

and we have used Theorem 55. O
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THEOREM 148. If the systems f : U — P*(S"™),U € P*(S™)) and f': U’ —
P8 U e P*(8™") are self-dual, then the system f x f is self-dual too.

PROOF. We show that U x U’ is a self-dual set

UxU ={uxduecUn elU'}={uxdueUd clU'}=
={uxv|ueUn €U} ={uxvueUnr eU'} = (U xU')".

Furthermore

Vuxu eUxU (f x fuxu)=(f*xf")Yuxu)=(fxf)uxu)
and, in the last equality, we have used Theorem 64. O

THEOREM 149. Suppose that the systems f : U — P*(S™), fi :

P*(S™)), U, U, € P*(S"™)) are self-dual and U N U} # 0. Then the pamllel con-
nection (f, f1) is self-dual.

PROOF. We show that U N U’ is self-dual
UNU ={ulueUandueU'} ={ufteUandu e U’} =
={tueUanduelU'}={uueUnU'}=UNU")*
etc. U

THEOREM 150. Let be the self dual systems f : U — P*(S™), U € P*(S(m)
and h : X — P*(S®), X € P*(S™). If | f(u) C X, then the system ho f is

uclU
self-dual.
PrOOF. By hypothesis U = U*. Furthermore, by Theorem 75 we have that
Yu e U, (ho f)(u) =(h" o f*)(u) = (ho f)"(u).
O

THEOREM 151. Consider the self-dual systems f: U — P*(S™) and g: V —
P*(SM), where U,V € P*(S"™). If the set

W ={ulueUNV, f(u) Ng(u) # 0}
is mon-empty, then the system f N g is self-dual.
PROOF. We show that W is self-dual. Indeed,
W =AuueUNV, f(u)Ng(u) #0} ={uze UNV, fu) Ng(u) # 0} =
={ulu e U andu € V and f*(u) Ng*(u) # 0} =
={uju e U andu €V and {Z|z € f(u) }ﬂ{x|x€g )} #£ 0} =
={ajlueUNV, f(u)Ng(u) #0} =W*.
The system f N g is self-dual because
Vu e W, (fNg)(u) = (f"Ng")(uw) = (fNg)"(w).
We have used Theorem 88. O

THEOREM 152. If the systems f, g are self-dual, then f U g is self-dual too.
PROOF. We note that U UV is self-dual. Then we apply Theorem 101. O
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REMARK 44. The autonomous system f = X is self-dual iff both U, X are
self-dual. If we consider Definition 51, b) of autonomy, then self-dual autonomous
systems do not exist since U with |U| =1 and U = U* is impossible. Definition 51,
¢) of autonomy gives the self-dual systems that fulfill X = X*.

7. Symmetry

NoTATION 19. Let S({1,...,m}) be the notation of the symmetrical group of the
set {1,...,m}. Its elements are the bijections (the permutations) o : {1,...,m} —

{1,...,m}.
NOTATION 20. Let be the bijection o € S({1,...,m}). For each A\ € B"™, A =
(A1y ooy Am) we denote by Ao € B™ the vector Ao = (Ag(1), s Ao(m))-

DEFINITION 58. The Boolean function F' : B™ — B" s called symmetrical

if for any bijection o we have
YAe B F(\) =F(\)

and asymmetrical otherwise.

NOTATION 21. For any bijective function o € S({1,...,m}) and any u € S™
we denote by u, € S the function u, = (Uer(1)5 o5 Ug(m))-

DEFINITION 59. The set U € P*(S™)) is called invariant to permutations
if for any bijection o we have

Yu,u € U = u, € U.

EXAMPLE 39. The sets U € P*(S) are invariant to permutations and S has

the same property.

DEFINITION 60. The system f is called symmetrical if U is invariant to per-
mutations and for any o € S({1,...,m}) we have Yu € U, f(u) = f(uy). Otherwise,
it is called asymmetrical.

REMARK 45. This definition is natural because all the simple logical gates:
NOT, AND, OR, NAND, XOR are symmetrical (relative to the inputs) and their
models may have the same property.

EXAMPLE 40. The autonomous systems are symmetrical whenever their input
set 1s tnvariant to permutations.

EXAMPLE 41. All the systems with m = 1 are symmetrical.

ExXAMPLE 42. If F : B™ — B" is a symmetrical function and d € R is an
arbitrary number, the ideal combinational system Fy : S — S0 4s symmetrical
(we remind that the set SU™) is invariant to permutations).

EXAMPLE 43. The f : S(™ — P*(S) system given by
Yu e S, f(u) = {x]x(t) > ur(t) - ... um(t)}
s symmetrical.
EXAMPLE 44. The S(™) — P*(S) system

N @@ wa@ <2l < |J @)U Uun(©)

Eet—d,t) EE[t—d,t)

with d > 0, is symmetrical.
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THEOREM 153. Let f be symmetrical. Then, for any bijection o € S({1,...,m}),
the initial state function ¢ fulfills

Vu € U, gpg(u) = ¢g(te)-
ProoF. For any o € S({1,...,m}) and any u € U we have
$o(u) = {x(—o0+0)|z € f(u)} = {(-00 + 0)[x € f(us)} = ¢p(uo)-

THEOREM 154. If f is symmetrical, then so is f*.

PRroOOF. By hypothesis, U is invariant to permutations and we show that U*
is invariant to permutations. Indeed, for any bijection o and any input u we have
wel" —=unel =u,clU=—=u, €U = u, € U*.

Furthermore, Vo € S({1,...,m}), Yu € U*
() = {3le € f@)} = [T € F(@,)} = Tl € F@m)} = £ (uy).
O
THEOREM 155. Let f : U — P*(S™), U € P*(S"™)) be a symmetrical system.

The inverse system f~': X — P*(S™) X = {x|F3u € U,z € f(u)} satisfies the
property that Vo € X, f~(x) is invariant to permutations.

PRrROOF. For any bijection o € S({1,...,m}) and any z € X we have
ue f~Hr) = uecUandx € flu) = u, € U and = € f(uy) = u, € f~ ().
O

REMARK 46. In general the Cartesian product of symmetrical systems is not
a symmetrical system. In fact, if the support sets U,U’ of f, [ are invariant to
permutations, we cannot say whether U x U’ is or is not invariant to permutations.

THEOREM 156. Suppose that the systems f : U — P*(S™), f| : Ul —
P*(S™)), U, U} € P*(S™) are symmetrical and U N U] # 0. Then the paral-
lel connection (f, fi) is symmetrical.

PROOF. Let be the permutation o € S({1,...,m}) and the input u € U N Uj.
The fact that u, € U,u, € U] are both true implies u, € U NU{, thus U N U7 is
invariant to permutations. Moreover,

Vu e UNUL (f fi)(u) = {z x 2’|z € f(u), 2" € fi(u)} =

={z x|z € fuo), 2" € filug)} = (f, f)(uo).
(]

THEOREM 157. We require that the systems f : U — P*(S™), U € P*(S(™)
and h : X — P*(S®), X € P*(S™) fulfill the condition \J f(u) C X. If f is
uelU

symmetrical, then the serial connection h o f is symmetrical too.
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PRrROOF. The set U is invariant to permutations. For any o € S({1,...,n}) and
any v € U we have

(ho fiw) = |J h@)= |J hl@)=(hof)(us).

z€ f(u) z€ f(uo)
]

THEOREM 158. Let be the symmetrical systems f : U — P*(S™) and g : V —
P*(SM), U,V € P*(St™). If the set W = {ulu € UNV, f(u)Ng(u) # 0} is
non-empty, then f N g is symmetrical.

PROOF. We show that W is invariant to permutations. Let be the bijection
o€ SH{1,...,m}). For any u € W we have u € U NV and f(u) N g(u) # 0, thus
ue € UNV and f(uy) Ng(uy) # 0 and, eventually, u, € W. We obtain

(fg)(w) = fw) Ng(u) = fug) Ng(us) = (f N g)(uq).

THEOREM 159. The union of the symmetrical systems is symmetrical.

PrOOF. We show that U UV is invariant to permutations. For the bijection
oceSH{1,...,m})and u e UUV, if u € U then u, € U, thus u, € UUV etc. O

THEOREM 160. For the system f the following statements are equivalent:

a) f is self-dual and symmetrical;

b) for any bijection o € S({1,...,m}) and any u € U we have U, € U and,
moreover, for any bijection o, any input u € U and any state x, x € f(u) =T €

f ().

PRroOOF. Take an arbitrary bijection o € S({1,...,m}) and an arbitrary u € U.

a) = b) U is self-dual which shows that u € U and the fact that U is invariant
to permutations implies that @, € U. Let be an arbitrary = € f(u). The system
f is self-dual therefore T € f(u) and the fact that f is symmetrical indicates that
f(@) = f(u,), thus we have obtained T € f(u,).

b) = a) The relation uw € U is true for the identical bijection 1y . ), thus
U is self-dual. For the identical bijection we have also Vx,z € f(u) = T € f(u)
showing that f is self-dual. Because w € U is true and we infer u, € U, we
have that U is invariant to permutations. From Vz,z € f(u) = T € f(uy),
T € f(u,) = x € f(uys) we get that Vz,z € f(u) = = € f(u,) following
f(u) C f(ue). The inverse inclusion is shown like this: f(u,) C f((45)e-1) = f(u),
in other words f(u) = f(us), hence f is symmetrical. O

8. Time invariance

DEFINITION 61. The set U C S is said to be invariant to translations if
it fulfills
Vd € R,Vu,u € U = uo7? € U.
EXAMPLE 45. The set U = S(™) is invariant to translations.

EXAMPLE 46. The set U = {ulu € S uy,...,u,, are monotonous} is itself
tnvariant to translations.
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EXAMPLE 47. Let U be the set of the signals u € S™) satisfying, for some
6, > 0,65 > 0, the properties: ¥j € {1,...,m},

ui(t=0) - u;(t) < (u;(€),

SE[t,t+6r]

ui(t—0) - u;(t) < (uy(§)-
Eeft,t+65]
The set U is invariant to translations.
LEMMA 2. Let be the system f: U — P*(S™) where the set U € P*(S(™) s
imvariant to translations. The following statements are equivalent:
a)Vd € R,Vu € U,Vz € f(u),xo1d € fuor?);
b)vde R,Vu e U, f(uot?) = {z o7z € f(u)};
¢) for all d € R, the diagrams

v L prsm)

wa | 1 Qa
v L oprsm)
are commutative, i.e. (wq,Qq) : [ — [ is a morphism of systems. We have denoted
wq: U — UVu € U,wg(u) = uor?,
Qq: P*(S™) = P*(SM) vX € P*(S™),Qq(X) = {z o7z € X}.

PrOOF. Let d € R and u € U arbitrary.

a) = b) From the fact that x € f(u) implies x o 7% € f(u o %), we have
{rordx € f(u)} C f(uoT?). We take some y € f(uort). Because yo7~¢ € f(u),
we get f(uor?) C{ylyor¢ € f(u)}. From

{rorllz e f(w)} C fluor?) C {ylyor™? € f(u)} = {zo7x € f(u)}
we infer b).
b) = a) If € f(u), then x o 7% € f(uo %), in other words a) is true.
b) = ¢) (fowa)(u) = f(wa(u)) = f(uor?) = {zori|z € f(u)} = Qu(f(v)) =
(Qa o f)(u).
¢) = b) f(uor?) = f(wa(uw)) = (f owa)(u) = (o f)(u) = Qa(f(u)) =
{rordz € f(u)}. O

DEFINITION 62. The system f is ttme tnvariant if U is invariant to trans-
lations and one of the previous equivalent conditions a), b), ¢) from Lemma 2 is
fulfilled. If f is not time invariant, then we say that it is time variant.

EXAMPLE 48. We show that the system f : S(™ — S defined by Yu €
S f(u) = uj o7 is time invariant, where j € {1,...,m} and d' € R. S(™
is invariant to translations and for x = u; o % we have that
vd € R,Yu € 8™, f(uor?) = (uor?); or? = u;j ordtd — (u; orYort=zor?

EXAMPLE 49. More general than previously, any ideal combinational system
Fy is time invariant:

vde R,Yu € 8™ Fy(uorh)(t) = F((uom))(t —d')) = Flu(t —d — d')) =
= Fa(u(t = d)) = Fy (u)(t — d) = (Fg(u) o 79)(t).
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EXAMPLE 50. Let the system f: S — S be defined by the equation
(8.1) o(t) = lim U @io)- - um(p))-
pE(§,00)

On one hand, for any u € S the function in & |J  (ui(p)-...-um(p)) switches
pE(£,00)
at most once from 1 to 0 as £ runs in the increasing sense of R. Thus the limit

hm U (ur(p) - ... um(p)) always exists and (8.1) defines a system, indeed. On
pe(€,00)

the other hand, SU™ is invariant to translations and since for any d € R and any

u e S we have

fluor®) = lim | (uilp=d)- . umlp—d) =

pE(§,00)

hm U (u1(p Um(p)) =2 =207
pE(E )
the fact that the system is time invariant is inferred.
EXAMPLE 51. The system f : SU™ — P*(S) defined by the inequality

ur(t—d') - up(t —d') < x(t)

with d' € R fized is time invariant and, in order to see this, let us take some
uwe S andd e R. If x € f(u), then

ut—d—d) .. -upt—d—d)<z(t-d)
is obvious, i.e. xo7e € f(uord).
EXAMPLE 52. The system f : SU™ — P*(S) defined by
2(t) Sur(t —d)U...Uuy(t—d),
with d' € R, is time invariant.

THEOREM 161. If the system f : U — P*(S™), U € P*(S"™) is time invari-
ant, then its initial state function ¢y : U — P*(B™) fulfills

vd € R,Vu € U, ¢p(uo7%) = ¢y (u).
PRrOOF. Vd € R,YVu € U,
do(uot?) = {x(—00 +0)|x € f(uor?)} = {2(-00 +0)|z € {yorily € f(u)}} =

={yor¥(—oo+0)ly € f(u)} ={y(—oco +0)|y € f(u)} = ¢y(u
0

THEOREM 162. If f is time invariant with race-free initial states and fized
initial time, then Yu € U,Vx € f(u),z is the constant function.

PrOOF. There is tg € R such that for any © € U we have the initial state
u® € B" with Vo € f(u),Vt < to,x(t) = u°. On the other hand, for some v € U,
there is 4/ € B™ with Vy € f(v),Vt < to,y(t) = w'°. For an arbitrary d € R we
choose v = uo 7% From f(v) = f(uo7?) = {x o7z € f(u)} we infer
Vo € fu),Vt < to, u° = 2(t) = x(t — d) = u”°
and because d is arbitrary we get that = is constant. O

THEOREM 163. If f is time invariant, then f* is time invariant.
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PrOOF. First of all, remark that if U is invariant to translations, then U* has
the same property: for any d € R and any u we have

welU —=T0elU=Tor'ce U= uordeclU = uor?eU*.

Furthermore, we take some arbitrary d € R and u € U*. We can write
frluor?) ={zlx € fluord)} = {Tlw € f(@or))} = {Tlr € {yorily € f(@)}} =

={yorlye f@)} = {zoriTe f(@)} = {zor|z € f*(u)},
therefore f* is time invariant. O

THEOREM 164. Suppose that the system f is time invariant. Then f~1: X —

P*(S), where X = |J f(u) C S s time invariant.
uelU

PrOOF. First we show that X is invariant to translations. Let be x € X. In
other words there is u € U such that x € f(u). For an arbitrary d € R, from the
invariance of U to translations, we have u o 7% € U while from the time invariance
of f, we have x o7% € f(uor?). Thus x o7 € X.

Show now that f~! is time invariant. Take some arbitrary d and u,z such
that u € f~1(z). This means that v € U and z € f(u). Because uo7¢ € U and
ror? e f(uo7?), we have uord € f~1(zo7d). O

THEOREM 165. The Cartesian product of time invariant systems is a time
mvariant system.

PrOOF. Consider the time invariant systems f : U — P*(S(™), U € P*(S(™)
and f': U — P*(S™)), U’ € P*(S'™)). Let d € R, u € U, v/ € U’ be arbitrary.
We infer

uxu €eUxU = ueUandv €U = uor?cUand v o7? € U =
—uor xu ot e UxU = (uxu)ordcUxU".
Thus U x U’ is invariant to translations. For any d € R and any u x v’ € U x U’
we get
(f x )(uxu)or?) = (f x fuor?xu or?) = fluor?) x f'(u o7?) =
={yxylye fluor?),y € f'(u' o7%)} =
={yxylye{rorize fu)}y € {a’ora’ € f'(u)}} =
={zorixa orx € f(u),2' € f'(u)} = {(xxa)or(xxa’) € (f x f)(uxu)}.
O

THEOREM 166. The parallel connection of time invariant systems is a time
tnvariant system.

THEOREM 167. Consider the time invariant systems f : U — P*(S™), U €

P*(SU) and h: X — P*(S®)), X € P*(S™) such that the inclusion |J f(u) C
uelU
X is true. Then the serial connection system ho f : U — P*(SP)) is time invariant.

ProOOF. Letd € R,u € U and y € (hof)(u) be arbitrary, showing the existence
of some x € f(u) withy € h(z). We have zor? € f(uor?) and yor? € h(xo7?) from
the time invariance of f and h, giving the conclusion that yo7¢ € (ho f)(uor?). O
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THEOREM 168. Let be the time invariant systems f : U — P*(S™), g : V —
P*(S™M), U,V € P*(S). If Ju € UNV, f(u) Ng(u) # 0, then fNg is time
invariant.

PROOF. Denote W = {u|lu € UNV, f(u) Ng(u) # 0} and show that this set
is invariant to translations. Let be d € R and v € W. Thus v € UNV and
fu)Ng(u) # 0. We take an z € f(u) N g(u). From the invariance of U and the
invariance of V' to translations it follows uor® € UNV while from the time invariance
of f and g it follows z o 7% € f(uo79) N g(uo7?). Thus f(uo7?) Nguord) #0
and uo7? € W.

The fact that = € (fNg)(u) = xo7¢ € (f N g)(uo7?) was already shown.
Hence f N g is time invariant. ]

THEOREM 169. The union of time invariant systems is time invariant.

REMARK 47. The time invariant autonomous systems have the support U and
the set X € P*(S™) invariant to translations. The version from Definition 51
¢) of the concept of autonomy keeps only the requirement that X is invariant to
translations.

The following two theorems are similar to Theorem 160 and their proof is omit-
ted.

THEOREM 170. For the system f, the following statements are equivalent:

a) [ is self-dual and time invariant;

b)Vd € R,Yu,u € U= tuo7? €U and, furthermore, ¥d € R,Vu € U,Vz,r €
flu)=Torle f(wor?).

THEOREM 171. Let be the system f. The following properties are equivalent:

a) f is symmetrical and time invariant;

b) vd € R, for any bijection o € S({1,...,m}),Vu,u € U = u, o7 € U and,
furthermore, Vd € R, for any o € S({1,...,m}),Vu € UVx,z € f(u) = zo7? €
flug o19).

9. Non-anticipation, the first definition

DEFINITION 63. f : U — P*(S™), U € P*(S(™)) is a non-anticipatory
system (in [11] the attribute ’dynamic’ is considered to be a synonym of 'non-
anticipatory’) if for all w € U and all x € f(u) it satisfies one of the following
statements:

a) x is constant;

b) u,x are both variable and we have

(9.1) min{¢|u(t — 0) # w(t)} < min{¢|z(t — 0) # z(¢)},
i.e. the first input switch is prior to the first output switch. If f does not fulfill the
previous property, it is called anticipatory.

REMARK 48. The non-anticipation (Definition 63) means that the system f is
in equilibrium?, as represented by the existence of the time interval (—oo, tg), where

u and T are constant: Uj(—oot,) = U(to —0) and T|(—so,1) = (to —0); then the only

2Moisil calls this equilibrium the ’rest position’; all his systems start their evolution from the
rest position, we have given a relevant example in this sense at page ix. The supposition of the
existence of the rest condition ’considerably simplifies the argument’. If we have a circuit which
has no rest position, we can replace it by another which has such a position, by introducing a new
input, which is not included in the circuit: the connection to the mains ([22], page 521).
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possibility to get out of this situation is the switch of the input. We conclude that
for such systems the first switch should be that of the input and afterwards the first
switch of the state may follou?.

EXAMPLE 53. The system f with Vu € U,Vx € f(u),z is the constant function
18 mon-anticipatory.
EXAMPLE 54. The system ; : Sm) — 8 Yu e S, (UL, ey Uy ooy U) = Wy,
j € {1,...,m} is non-anticipatory, because either u; is constant, or wu; is variable
implying that u is variable. In this last case we have
min{t|u(t — 0) # u(t)} < min{t|u;(t —0) # u;(t)}.

EXAMPLE 55. The previous example is generalized by the statement that any
ideal combinational system Fy with d > 0 is non-anticipatory. Indeed, for any tq,

U (—o0,t0) = U(to —0) implies Fg(w)|(—oo,to) = Fa(u)(to —0) and if u(to —0) # u(to),
then F(u(to—d—0)), F(u(toy—d)) represent two values that may be equal or different.

EXAMPLE 56. The following S — S system
z(t)= () )
£€(—o0,t]
is non-anticipatory since, for all uw € S, either x is constant, or it is variable with
exactly one switch from 1 to 0. In the second case we can write

2(—00+0) =u(—00+0) =1,

min{¢|z(t — 0) # a&)} = min{t|z(t —0) - 2(t) =1} =
= min{¢|u(t — 0) - u(t) = 1} = min{t|u(t — 0) # u(t)}.
EXAMPLE 57. The S — S system

€€t o0)
s mon-anticipatory.

EXERCISE 2. Is to be analyzed from the anticipation point of view the system
f:8® — P*(S) described by

up(t) <a(t) <u ()Uuz(t)
in the following four cases: a) u1(—o00+0) = 0, us(—oc0+0) = 0; b) uy(—oc0+0) =
Lyug(—00 +0) = 0; ¢) ui(—oc0 +0) = 0,u (oo+0)f1 d)ul(ooJrO):
Liug(—oc0+0)=1
THEOREM 172. If g : V — P*(S(") V € P*(S"™) is a non-anticipatory
system, then any system f : U — P*(S") U € P*(S™) with f C g is non-
anticipatory.

PRrOOF. Let u € U. We have the following possibilities:

i) w is constant. From Definition 63 we have that Va € g(u),x is constant, in
particular Vz € f(u),x is constant. Therefore, f is non-anticipatory;

ii) w is variable. Let « € f(u) be arbitrary. Then

ii.1) « is constant implies that f is non-anticipatory, by Definition 63 a);

ii.2) x is variable. As element of g(u), x satisfies (9.1) and, by Definition 63 b),
f is non-anticipatory. O

3Moisil presumes implicitly that his models are non-anticpatory in the sense of Definition 63
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THEOREM 173. If f is a non-anticipatory system, then its dual f* is mon-
anticipatory too.

PRrROOF. Let u € U* and = € f*(u) be arbitrary. If x is constant, then f*
is non-anticipatory, thus we can suppose that x is non-constant, implying that
T € f(u) is non-constant. By Definition 63 b), we have that @ is not constant and

min{t[@(t — 0) £a(t)} = min{t|u(t — 0) # u(t)} <

< min{t|z(t — 0) # z(t)} = min{t|Z(t — 0) # Z(t)},
thus f* is non-anticipatory. O
THEOREM 174. If f : U — P*(S™),U € P*(S™) and f' : U' — P*(S"")),

U e P*(S(’”/)) are non-anticipatory systems, then their Cartesian product is non-
anticipatory.

PROOF. The hypothesis states the fulfillment of the following properties
Vu € U,Vz € f(u), (x is constant) or
or (u,x are variable and min{t|u(t — 0) # u(t)} < min{t|z(t — 0) # x(¢)}),
vu' € U' V2! € f'(u), (2’ is constant) or
or (v, 2" are variable and min{t|u’(t — 0) # u'(t)} < min{t|2'(t — 0) # 2'(t)}).

For arbitrary u € U, x € f(u), v € U, 2’ € f'(v'), by their conjunction we get the
disjunction of the following four statements:

a) x is constant and x’ is constant wherefrom =z x ' € (f x f/)(u x v') is
constant;

b) z is constant, v’, 2’ are variable and min{¢|u'(t — 0) # «/(¢)} < min{¢t|z’(t —
0) # 2'(t)} wherefrom u x v’ and x x 2’ € (f x f")(u x v') are variable and

min{t|(u x u')(t = 0) # (u x u')(t)} < min{t|u/(t — 0) # u'(t)} <
< min{t|2'(t — 0) # 2'(t)} = min{t|(x x 2')(t — 0) # (z x 2)(t)};

¢) u, x are variable and min{t|u(t — 0) # w(t)} < min{¢|z(t — 0) # «(¢)} and 2’
is constant. Similarly with b);

d) u, z are variable and min{t|u(t — t)} < min{¢|z(t — 0) # z(¢)} and
u',x’ are variable and mm{t|u (t— ) u ( )} < min{¢|z’(t — 0) # 2'(¢)}.
We 1nfer that u x v’ and x x 2’ € (f x f')(u X u') are variable and

min{t|(u x u')(t — 0) # (u x u')(t)} =
= min{min{t[u(t — 0) # u(t)}, min{t|u/(t — 0) # '(t)}} <
< min{min{t|z(t — 0) # 2(¢)}, min{t|2'(t — 0) # 2"(t)}} =
=min{t|(z x 2')(t — 0) # (z x 2')(¢) }.
We have shown that f x f’ is non-anticipatory in all the four cases a),...,d). O
THEOREM 175. If f : U — P*(S™) and f] : U, — P*(S™), U, U] €

P*(S™)) are non-anticipatory systems and U NU! # 0, then their parallel con-
nection 1S non-anticipatory too.
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PrOOF. The hypothesis states the conjunction of the statements

Vu e UNU;,Vx € f(u), (x is constant) or
or (u,x are variable and min{t|u(t — 0) # u(t)} < min{t|z(t — 0) # x(¢)}),
Vu e UNU;,V2' € fi(u), (2" is constant) or

or (u, " are variable and min{t|u(t — 0) # u(t)} < min{t|a’(t —0) # 2/(¢)})
etc. g

THEOREM 176. Let be the systems f : U — P*(S™),U € P*(S™) and
h:X — P*(SW), X € P*(S™) with the property that \J f(v) C X. If f and h
uelU

are non-anticipatory systems, then their serial connection ho f : U — P*(S®) is
non-anticipatory.

PrOOF. Let u € U be arbitrary, for which we have the following possibilities:

a) w is constant. From Definition 63 applied to f we get that Vo € f(u),x is
constant and from Definition 63 applied to h we get that Yy € h(x),y is constant.
Thus, from Definition 63 a), h o f is non-anticipatory;

b) w is variable. We take some arbitrary z € f(u) and from Definition 63
applied to f we have the existence of two possibilities:

b.a) x is constant. At this moment we can apply Definition 63 to h, following
that Vy € h(x),y is constant wherefrom, taking into account Definition 63 a), ho f
is non-anticipatory;

b.b) z is variable satisfying min{¢|u(t—0) # u(t)} < min{t|z(t—0) # z(t)}. We
take an arbitrary y € h(z), from Definition 63 applied to h, following the existence
of two possibilities:

b.b.a) y is constant. From Definition 63 a) it follows that h o f is non-
anticipatory;

b.b.b) y is variable satisfying min{¢|x(t — 0) # x(t)} < min{t|y(t — 0) # y(¢)}.
In this case

min{tfu(t - 0) £ u(t)} < min{tfe(t — 0) £ 2(H)} < min{tly(t - 0) £ y(H)},
hence h o f is non-anticipatory again. O

THEOREM 177. If f is non-anticipatory and g is another system, then fNg is
non-anticipatory.

PRrROOF. We take into account that f N g C f and Theorem 172. (]

THEOREM 178. Let be the systems f : U — P*(S™), g : V — P*(S™),
U,V € P*(St™).

a) If f,g are non-anticipatory, then f U g is non-anticipatory too.

b) If f Ug is non-anticipatory, then f,g are both non-anticipatory.

PRrROOF. a) Let w € U UV and = € (f U g)(u) be arbitrary. There are three
possibilities: v €e U\ V,u € V\U and u € UNV etc.
b) The inclusions f C fUg,g C fUg are true and we apply Theorem 172. O
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REMARK 49. Let f = X be an autonomous system. It is non-anticipatory if
we are in one of the following situations: a)Vx € X, x is constant, b) Iz € X, x is
variable; then any u € U is variable and (9.1) is fulfilled.

For the deterministic system f : U — S U € P*(8™), the condition of
non-anticipation is: Yu € U, a) f(u) is constant or b) u,x = f(u) are both variable
and satisfy (9.1). As we have mentioned, this is the case of the ideal combinational
systems.

10. Choosing 0 as initial time instant
NOTATION 22. We use the notation
S™ = {ufu € S Vit < 0,u(t) = u(0 — 0)}.
_ THEOREM 179. We state the following properties relative to some system f:
U — P*(S™), U e P*(S™):
)0 s
i) Yu e U, f(u) c S
iii) Vd € R,Yu € U, Vz,
(x € f(u) anduot? e U) = zo7 € f(ucm'd).

a) The time-invariant non-anticipatory system f : U — P*(S™), U € P*(S™)
is given. We define the system f : U — P*(S™) by

U={uueUn S(S’”) and f(u) N Sé") # 0},

(10.1) Vue U, f(u) = f(u)nS§™.
The system ffulﬁlls i), i), 4i) and is also non-anticipatory.
b) Let be the system f : U — P*(S"™) satisfying the properties i), ii), i) and
non-anticipation. The system f : U — P*(S"), U € P*(S™)) defined by
U={uordeR,uc U},

vdeR,Vue U, f(uor?) = {rorlz € f(u)}

is time tnvariant and non-anticipatory.

PROOF. a) Show that U N Som) # (). Let be u € U. We have the possibilities:

1) w is constant. Then u € S(()m), thus uw € U N S(gm);

2) w is variable.

Denote d = min{t|u(t — 0) # u(t)}. If d > 0, then u € S(S’") and u € UN S(()m)
are true. If d < 0, then for any d' > —d, u o 74 € U is true because U is invariant
to translations and uo ¢ € S(()m) holds true also, making uo 7% € U N S(S’”) true.

Show that U # . Take some arbitrary u € U N S(()m). If f(u)N S(()”) # 0, the
property is true, otherwise let be some © € f(u). The fact that = ¢ Sén) shows
that it is variable and if we denote by d = min{¢|z(t — 0) # x(¢)}, we have d < 0.
Remark that uor? € U, uor? € S{™, zo7? € fluor?) and zo7? € S take
place for all d’ > —d. In other words uo 7% € U.

This shows that f is well defined, in the sense that U # 0 and Vu € U, f(u) # 0.
Moreover, i) and ii) are obviously satisfied.
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Show now the truth of iii). Take d € R, u € U, x arbitrary with z € f(u) and
word e U true. We have the possibilities:
j) z is constant. Then x o 7¢ = z is constant and z o 7% € S(()");
jj) x is variable. Because x € f(u), from the non-anticipation of f we have that

u is variable and
0 < min{t|(uo7)(t — 0) # (wo7%)()} < minft|(z o 79)(t — 0) # (x o 7)(1)},

showing that x o 7¢ € Sén)

In both cases j), jj), = € f(u) has implied = € f(u) and, furthermore, x o
7@ € f(uo7?) from the time invariance of f and, eventually, z o 7¢ € f(u o7%)
(= fluor®) 0 S5™).

Because f C f, the non-anticipation of f is a consequence of Theorem 172.

b) Show that f is well defined in the sense that if d d € Rand there are u,v € U
such that uo7? = vo7? | we get f(UOTd) fvor®). Let be zor? € f(uord ) We
infer that = € f(u) and v = uwo 794 € U. From iii) we have that = o 794 € f( )
e zor?=z079 " or? ¢ f(vor?). We have obtained that f(uo7%) C f(vor?)
and the inverse inclusion is shown similarly.

Show that U is invariant to translations. Let be v € U. Then there are some
d € Rand u € U such that v = uor?. For an arbitrary d’ € R, as vord = uOTd+d/,
we infer vord € U.

Show that f is time invariant. Let be v € U and y € f(v), meaning the existence
ofue(?anddERwithvquT Wegetyef(UOT )*{x07d|x€f )} In
other words 3z,y = ro7% and z € f ( ). We take an arbitrary d’ € R for which
yor? =zord yord e {zor™ |z e f(u)} = f(uorHd) = flvor?).

Show now that fis non-ant1c1pat0ry Let us take, like previously, v € U and
y € f(v), for which there are u € Uxe f( ) and d € R such that v = u o 7¢ and
y = x o7% We have the possibilities:

I) y is constant. Then f is non-anticipatory;

II) y is variable. Then x € f(u) is variable and the hypothesis concerning the
non-anticipation of fstates that w is variable and

min{t|u(t — 0) # u(t)} < min{t|z(t — 0) # x(¢)}.
We add d to both sides of the previous inequality and we obtain
min{t[v(t — 0) # v(t)} = min{t|(uo 79 (t — 0) # (uo7)(t)} <

< min{t|(z o 79)(t — 0) # (z o 79)(1)} = min{tly(t - 0) # y(t)}.
O

REMARK 50. The importance of the previous theorem is that it gives the cir-
cumstances in which we can choose 0 be the initial time moment, simplifying a little
the study of the asynchronous systems. In applications we often use this possibility.

We note that this theorem represents the passage from S to S™ similarly
with the passage in Ch. 3 from Diffm) to Sm) and the passage in Ch. 4 from
S(m) to S On the other hand, the properties i), ii) look similar to b), c) in
Definition 37 and iii) to Definition 62 of time invariance, adapted to the situation
when U is not invariant to translations (see Lemma 2, a)).
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11. Non-anticipation, the second definition

DEFINITION 64. Let the system f: U — P*(S™) be given, U € P*(S™). It
is called non-anticipatory (or dynamic) if vVt € R, Yu € U, Yv € U,

U|(=00,t) = Vl(=00,) = {Z|(~00,l2 € (W)} = {y(~cogly € f(v)}
s true and anticipatory otherwise.

REMARK 51. Definition 64 states that for any t and any u, the restrictions
T|(—oo,) where x € f(u) depend on the restriction u)(—oo,) only and are independent
on the values u(t'),t’ > t. In other words, 'the present depends on the past and is
independent on the future’ or, more correctly: the history of all the possible states
until the present moment, including the present depends only on the history of the
input and it does not depend on the present and the future values of the input. The
definition means that Vt € R a function f; exists that associates Vu € U t0 Uj(—oo )
the set

fe(u(—co,ty) = {2)(—coglz € f(W)}.

Definition 64 represents a perspective of non-anticipation, other than the pre-
vious one from Section 9 and the two properties are logically independent. When
we shall make comparisons between the two notions of non-anticipation we shall
explicitly mention to which of them we refer. When we shall use the word non-
anticipation’ only, this will implicitly refer to the notion that was defined in this
section.

EXAMPLE 58. The deterministic system f : S — S,
Vu e S0, fu) =Xj0,1) @ (w1 0 ) " X[1,00)
is non-anticipatory in the sense of Definition 64. The system f is anticipatory
in the sense of Definition 63 because for ui = Xjg.oc), U2 = ... = Um = 0 the
contradiction min{t|u(t — 0) # u(t)} =2 > 0 = min{¢|x(t — 0) # z(¢)} is obtained.
EXAMPLE 59. The deterministic system f: S — S,

_ Lifu= X10,00)
Vue S, f(u) = { u, otherwise ’

is anticipatory in the sense of Definition 64 because for t1 = 1, u = X[ o), V =
X[0,2) We have U|(—oo ;) = V|(—oo,ty) DUt 1{(—o01] 7 X[0,2)(— o) - However it is non-
anticipatory in the sense of Definition 63.
EXAMPLE 60. The deterministic system f:S — S
1.if u=
Vu €S, fu) = { 0] U= X(o.00)

woT +, otherwise

is anticipatory in the sense of both Definitions 63 and 64.
EXAMPLE 61. The deterministic system

Da(t) = (z(t = 0)®u(t—0))- | Du(§)
ce(t—d,t)
u,x € S,d > 0 is non-anticipatory in the sense of both Definitions 63, 64. The
idea expressed by such an equation is: x switches at these time instants when u has
indicated the necessity of such a switch (x(t —0) @ u(t —0) = 1) for d time units
(W|[t—d,+) 18 the constant function, with null derivative in the interval (t — d,t)).
This equation models the delay circuit.
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THEOREM 180. If f is non-anticipatory, then its initial state function ¢, sat-
isfies
Yu € U,V € U,u(—00 +0) = v(—00 + 0) = ¢g(u) = ¢y (v).

PROOF. Let u, v be arbitrary such that u(—oco+0) = v(—oo+0). Thus there is
some t with uj(_oo ) = v‘ —oo,t)- From the non-anticipation of f we get {x|(_oo7t] |z €
u)t = {ZJ| —c0 t]|y € f(v)} and this implies

do(u) ={x(—c0+0)|z € f(u)} = {y(—c0c+0)|y € f(v)} = ¢o(v
O

REMARK 52. The previous theorem shows the existence of a partial function
B"™ — P*(B™) that associates with u(—oo 4 0) the set {z(—oc0 + 0)|z € f(u)}.

THEOREM 181. If f is non-anticipatory, then f* is non-anticipatory too.
Proor. Vt € R,Vu € U*,Vv € U*,
Uj(=o00,t) = Vl(=o0,t) =7 U|(=00,t) = U|(=00,t)
= {2)(—onlr € F@)} = {Y)(~cyly € F(0)}
= {T|(—o0,)|7 € fF(@)} = {J)(—c,yly € (D)}
= {2 (—ocilz € [ (W)} = {Y(—0nly € [ (v)}.
O

THEOREM 182. Let be the systems f : U — P*(SM) U ¢ P*(St™), ' :
U — P*(SM)), U’ e P*(S(™)). If f, f' are non-anticipatory, then f x f' is non-
anticipatory too.

PROOF. For arbitrary t € R,u € U,v € U,u' € U’,v' € U’, the hypothesis
states
Uj(~o0,) = Vl(~00,t) AN Uj(_cq,t) = Vf(—o0,1)-
From the non-anticipation of f we get
{x\ oot]|x€f }7{y\ oot]|y€f( )}
while from the non-anticipation of f’ we obtain
{7 ool € f/ (W)} ={y (ol € F/(V)}
By the conjunction of the last two statements we have
{@x e oenlrxa’ € (Fx f)uxu)} = (X1 onlyxy € (Fx ) xt)
showing the fact that f x f’ is non-anticipatory. O
THEOREM 183. Consider the systems f : U — P*(S™), U € P*(S"™), f :

Ul — P*(S™)), U} € P*(S"™) with the property that U NU, # 0. If f, fi are
non-anticipatory, then the parallel connection (f, f1) is non-anticipatory too.

THEOREM 184. The systems f : U — P*(S™), U € P*(S"™), h : X —
P*(S®), X € P*(S™) are given with the property that |J f(u) C X. If f,h are
€U

u
non-anticipatory then the serial connection h o f is non-anticipatory too.
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ProOOF. Let t € R,u € U,v € U be arbitrary. We have

U|(—c0,t) = Vl(=o0,t) = {T|(—oc, [T € F(u)} = {y)(~00,ly € f(v)}

= {2)(coc |7 € f(u),2 € h(2)} = {2 _ocyly € f(v), 2" € h(y)}

= {2|(—o0,]|2 € (ho f)(W)} = {20 yl?’ € (ho f)(v)},
implying that h o f is non-anticipatory. O
THEOREM 185. Let be the non-anticipatory systems f : U — P*(S™), g: V —

P*(S), U,V € P*(SM™). IfUNV # 0 and Ju € UNV, f(u) Ng(u) # 0, then
f N g is non-anticipatory.

ProOOF. Put W = {ulu € UNV, f(u) N g(u) # 0} and take some arbitrary
t e R,u e W,v € W such that the hypothesis

Uj(=o0,t) = V|(~o00,t)

holds true, implying that
{x|(7oo,t]|x € f(u)} = {y\(foo,t”y € f(’l))},

{2)(—oolT € g(W)} = {Y) (0 ly € 9(v)}

are both true. Intersect the left hand sides and the right hand sides of these two
equations to get

{7 (ool € (f N9 ()} = {2)(—colz € flu) Ng(u)} =
= {7 (o] € fF(W)} N {Z)(—oo |z € g(u)} =
= {Yl(—o0t)l¥ € F(V)} N {Y)(—o0r)|y € 9(v)} =

= {Y|(coo)ly € F(v) Ng(V)} = {Y|(—o0rly € (f N g)(v)}.
0

EXAMPLE 62. Let U = {0,x[0,)} and f : U — S be the deterministic
system given by f(0) = X1 00)r F(X[0,00)) = X(—o0y0)- 1t s anticipatory because
0‘(,0070) = X[O,oo)|(foo,()) and X[l,oo)|(foo,0] ?é X(fO0,0)‘(*O0,0]' At th@ same time,
f is the (disjoint) union of the systems f1 : {0} — f X000} — 5 de-
fined by f1(0) = X[1,00)s f2(X[0,00) = X(—00,0)- The systems f1 and fy are both
non-anticipatory. We conclude that, in geneml the union of the mon-anticipatory
systems is not a non-anticipatory system.

THEOREM 186. Any autonomous system X € P*(S™) is non-anticipatory.

PRrOOF. For any t € R,u € U,v € U we have

U|(~00,t) = V(—o0,t) = {&](~o00,|2 € X} = {Z)(~c0 gz € X}
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12. Other definitions of non-anticipation. Non-anticipation*®

DEFINITION 65. Let be the system f : U — P*(S™), U € P*(S(™). It is called
non-anticipatory if it satisfies one of the following conditions, called conditions
of non-anticipation:

i)Vt € R,Vu e U Vv € U,

Ui —oest) = Vi—set) = {o(B)]z € FW)} = fyOly € )}
i) Vt € R,Vu € U,Yv € U,3d > 0,
Ult—d,t) = Vj—d,r) = {2(t)|z € f(u)} = {y()|y € f(v)};
i) vt € R,3d > 0,YVu € U,Yv € U,
U|[t—d,t) = V|[t—dp) = 12(t)|z € f(u)} = {y(t)
w)3d > 0,Vt € R,Yu € U,Yv € U,
Ult—a,t) = Vj—d,) = {2(t)|z € f(u)} = {y()]y € f(v)};
v) Vit € R,Vu € U,Vv € U,
Uj(—o0,t] = V|(=o0,t] = 1|(—o,|T € f(1)} = {Y(=00,ly € f()};
vi) Vt € R,Vu € U,Vv € U and
Uj(—00,t] = V|(—o0,] = {x(t)|z € f(W)} = {y(t)|y € f(v)};
vit) Vi € R,Vu € U,Vv € U,3d,3d',0 < d < d' and
U[fp—d’ t—d] = V|ft—d’ t—d) = 12(t)|z € f(u )} ={y®)ly € f(v)};
vigg) Vt € R,3d,3d',0 < d < d' andVu € U,Yv € U,
W|[t—d’ t—d] = V|[t—d’ t—d] — {z(t)|x € f(u } ={y)ly € f(”)}a
iz) 3d,3d',0 < d < d' and vVt € R,Vu € U,Yv € U,
Uj[t—d t—d] = V|t—d't—d) = {2(t)|z € f(w)} = {y(t)|ly € f(v)}.

THEOREM 187. If f: U — S is a deterministic system, then Definition 65
v) and Definition 65 vi) are equivalent. We have that Definition 64 and Definition
65 i) are equivalent in this case too.

ye f(v)}

PROOF. We prove the first statement. Because v)=-vi) is obvious, we prove
vi)=>v). Let us suppose against all reason that v) is not true, i.e. It € R,3Ju €
U,Fv € U, uj(—o0,t] = V|(=o0,t] a0 f(U)|(—o0,] 7 f(V)|(=0c,sj- This means the exis-
tence of tg <t such that uj(_se t5] = Vj(=co,to] and f(u)(to) # f(v)(to), contradiction
with vi). O

REMARK 53. In Definition 65, all of i),...,ix) express the same idea like Defi-
nition 64, namely that the present depends on the past only and it is independent
on the future. The implications are:

w) = i) = ii) = 1) <= Definition6}
4 \
ir) = wvii) = i) = vi) <= v)

In ii),...,iv), vii),...,ix) the boundedness of the memory occurs: these are sys-
tems whose states do not depend on all the input segment u|(_oo 1), but on the last
d time units u|—q,) only and similarly for uj(—oos and w—q ¢— d]
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Now have a look at the non-anticipation property iv). We note that if d > 0
is a number for which it is fulfilled, then any number d' > d fulfills it also: Vt €
R,YVu € U,Vv € U,

Ujj—ar) = Vj—ar,) = 12(t)|z € f(u)} = {y()|y € f(v)}.

Our problem is whether the set of those d satisfying implication iv) is bounded from
below by some d” > 0, because we have a non-anticipation property

vt € R,Vue UV e,
u(t = 0) = v(t = 0) = {z(®)|z € f(u)} = {y()ly € f(v)}

also, like in the example

u(t—0)-z(t)=0
where u,x € S. If this lower bound exists, we obtain a new shading of that concept
of non-anticipation. The problem of the existence of such bounds is, in principle,
the same if d is variable like in ii), @ii) or if instead of one parameter d we have
two parameters d,d’ and two bounds, like in vii), viii), iz).

Remark that the reasoning of Theorem 187 is impossible to use if f is non-
deterministic. We suppose, for this, that the system f : S — P*(S) satisfies f(0) =
10,1}, f(Xp2,00)) = {X(—00,0)» X[0,00) }» where 0,1 € S are the constant functions.
We have Vt € [0, 2),

O\(foo,t] = X[2,00)|(—00,t] and
and {0)(—oo,1) 1(—o0.1} 7 {X(—00,0)[(—00,1]s X[0,00)|(—o0,]} and

and {z(t)|x € f(0)} ={0,1} = {y()|y € f(X[2,00))}-

EXAMPLE 63. The system Iq : S — S defined by Yu € S,x(t) = Ig(u)(t) =
u(t —d), satisfies for d > 0 the non-anticipation properties i),...,ix) from Definition
65 as well as the boundedness from below property from the end of Remark 53.

EXAMPLE 64. Let the S — P*(S) systems be defined by the inequalities
M w© <),

feft—dr,t)
xt)< | u@),
ge[t_dfvt)
N wO<zm)< |J .
E€[t—dy,t) e(t—dy,t)

where d. > 0,dy > 0. The last of them represents the intersection of the first two.
The three systems satisfy all the non-anticipation properties i),...,ix) from Definition
65, together with the boundedness property from Remark 58 (we note that the lower
bounds are d,,dy and max{d,,ds}).

EXAMPLE 65. The S — P*(S) systems described by the inequalities

N w© <),

Eeft—d t—d|

zty<  J w®),

cclt—d’ t—d)
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where 0 < d < d', as well as their intersection
N wO<zty<  J  ul®,
Ee[t—d’ t—d] Eeft—d' t—d)
satisfy the non-anticipation properties v),...,ix) from Definition 65.
EXAMPLE 66. The S — P*(S) system defined by

t

/ugx(t)

—00

(see Example 30 for the definition of the integral) satisfies the non-anticipation
properties v), vi) of Definition 65.

EXAMPLE 67. Denote by ¢ : S(™ — R the function

0, if u is constant
(m) = ’
Vu € S p(u) = { min{t|u(t — 0) # u(t)}, if u is variable

The deterministic system
x(t) = N u(g),
EE[t—p* (u),t—p? (u)]
u,x € S, satisfies the non-anticipation property vii) of Definition 65.

DEFINITION 66. The system f is called non-anticipatory” if it satisfies Vt €
R,Vu e U,Vv € U,

(U[t,00) = V)[t,00) and {z(t)]x € f(u)} = {y(?)

ye flv)}) =

:>{x|[too|x€f }*{y\[toowef( )}

and anticipatory* otherwise.

REMARK 54. Unlike the non-anticipation that relates the past and the present
of the input and of the states, the non-anticipation™ relates their present and future.
We remark that this property somehow resembles with firing the initial conditions
in a differential equation ({z(t)|lxz € f(uw)} = {y(t)|ly € f(v)}). The consequence
is that the solution is unique ({x|[o0)|z € f(u)} = {Yjjr,00)ly € f(v)}) under an
arbitrary given input (U|jt,s0) = Vjt,00) )-

Here are two other non-anticipation™ requirements: Yt € R,Vu € U,Vv € U,

U|[t,00) = V[t,00) = It € Ry {z)jpr 00y |T € f(w)} = {Y)[,00) [y € f(v)}
and ¥Vt € R,Yu € U,Yv € U,

(U[t,00) = Vlft,00) @ {Z)(—cogglz € (W)} ={y)(~cgly € f(v)}) =

= 3t' € R, {xl[t’,oo)|x € f(u)} = {y\[t’,oo)|y € f(’t))}

The reader is invited to write other similar properties.
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13. Injectivity, the first definition

DEFINITION 67. The system f : U — P*(S™), U € P*(S"™) is called injec-

tive (or into) if
Vu e UV € Uu#v = f(u) # f(v).

REMARK 55. This is a first perspective on injectivity, namely stating that if the
inputs u,v are distinct, then the sets f(u), f(v) of the possible states are distinct.
If f is deterministic, then its injectivity coincides with the usual injectivity of the
(uni-valued) functions.

EXAMPLE 68. Consider the three systems from Example 64. The first, denoted
by f1: S — P*(S), is described by the inequality

M w© <),
EE[t—dr,t)
dr >0, u,x € S and satisfies the property that for any u = Xy, 4,y with 0 <t1—tp <

dry () w(§) =0 and fi(u) = S. Thus it is not injective. Similarly, the second
EE[t—dr,t)
system fo : S — P*(S), given by

xt)< |J u©
ge[t_dfrt)
dy > 0, satisfies the property that for any u = X (oo t0)U[t:,00) With 0 < t1—1to < dy,
U w() =1 and we have fo(u) = S. Thus it is not injective either. The
ge[t_df7t)
third system fs = f1 N fa is not injective, because for any w = X[z 1,)Ults,t5)U...»

with Vk € N,t2k+1 — tor, < d, and tok+2 — topt+1 < df, we have ﬂ u(f) = 0,
e(t—d, t)

u(§) = X(to,00) (t) and f3(u) = {z|x € S, supp = C (to,00)}.
£€[t—df,t)

EXAMPLE 69. The autonomous systems f : U — P*(S™), U € P*(S™)) with
|U| =1 are injective.

EXAMPLE 70. The autonomous systems f = X with |[U| # 1 are not injective.

ExaMPLE 71. The systems described by the inequalities

u(t) < x(t),

z(t) < u(t),
u,x € S are injective, together with their intersection that is the deterministic
system x(t) = u(t).

EXAMPLE 72. For d € R fized, the deterministic system f : S — S, f(u) =

wo T is injective.

EXAMPLE 73. The system f : U — P*(S), U = {ulu € S® uy(t) < ua(t)}
described by the inequality
ug (t) < x(t) < up(t)
is injective. Indeed, at each time instant t three possibilities exist: ui(t) = ua(t) =
z(t) = 0; ur(t) = 0,u2(t) = 1,2(t) € B; ui(t) = ua(t) = x(t) = 1 and at distinct
inputs distinct sets of solutions correspond.
THEOREM 188. The dual of an injective system is injective.
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ProoF. If f is injective, then for any u,v € U* we have
ukv=TET = (@) £ 1) =

= {7z € f(@)} # {7lw € f(O)} = f7(uw) # 7 (v).
O

THEOREM 189. Let f : U — P*(8™), U € P*(Sm), f' : U — P*(S""),
U’ e P*(8(™)) be injective systems. Then f x f' is injective.

PROOF. Let us take u x u/,v x v' € U x U’ arbitrary such that u x v’ # v x v/,
for example u # v. From the injectivity of f we infer

(f x f)(uxu) = flu) x f/(u) # fv) x /(") = (f x f)(vx0).
O

THEOREM 190. The parallel connection of injective systems is an injective sys-
tem.

THEOREM 191. If F': B" — B" is an injective function and d € R, then the
system Fy is injective.

PRrROOF. Let u,v € SU™ such that 3ty,u(te) # v(to). Then F(u(to)) # F(v(to))
wherefrom Fy(u)(to + d) # Fy(v)(to + d). O

REMARK 56. Suppose that f is symmetrical. If m > 1, then it is not injective
because there are o € S({1,...,m}) and v € U such that v # u, and f(u) = f(us).

The spirit of Definitions 64, 65 of mon-anticipation, Definition 66 of non-
anticipation® and Definition 67 of injectivity gives new definitions of injectivity
like: ¥t € R,Yu € U,Yv € U,

U (—o0,t) 7 V|(—o0,t) == {T|(=00,] T € f(u)} # {¥(—00,11|y € f(V)},
vVt e R,Vu e U,Yv € U,

U|[t,00) 7 V|[t,00) = It € Ry {x)jpr o0y |T € f(u)} # {y1vr.00) |y € f(0)}

etc.

14. Injectivity, the second definition

DEFINITION 68. The system f : U — P*(S(™) U € P*(S™) is injective (or
into) if it fulfills

Vu e UYv € Uyu #v = f(u)N f(v) = 0.

REMARK 57. This second definition of injectivity states more than the previous
one, namely that if two inputs of f are distinct, then the corresponding sets of
possible states are not only distinct, but also disjoint. In the case of deterministic
systems, it coincides with the first definition of injectivity and also with the usual
injectivity. In particular Theorem 191 is true for the second definition of injectivity
too.

An injective system f creates a partition of the set X = |J f(u) in classes of
uelU
equivalence according to the relation

Vee X,Vye X,z ~y<= Jue Uz € f(u) andy € f(u).
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Moreover, in the previous definition Ju € U is, in fact, Au € U and there is a
bijection between U and X/ ~ .

EXAMPLE 74. The system f : S0 — P*(S(m+1) defined by
Vu e S™ f(u) = {ux 2|z’ € S}
s injective.
EXAMPLE 75. The system f : S — P*(S®),

[ {ux (uort),ux (uoT?)}, ifu is not constant
VYu € 5, flu) = { {u x u}, otherwise
18 injective.
EXAMPLE 76. The system f:S — P*(5),

[ {uottuor?}, ifu is not constant
Vu €S, f(u) = { {u}, otherwise
s injective.
THEOREM 192. If g : V. — P*(S™), V € P*(S'™) is injective and f C g,
then f is injective too.

PROOF. Suppose that the domain of f is U. If |U| = 1, then the statement is
fulfilled. Thus we can suppose that |U| # 1. Let be u,v € U, u # v. As g(u)Ng(v) =
O

0, f(u) C g(u), f(v) C g(v), we infer f(u) N f(v) =0.
THEOREM 193. If f is injective, then f* is injective too.

PROOF. For u,v € U* with u # v, we infer that f(uw) N f(v) = 0. Thus {Z|z €
f@)}N{Z|lz € f(v)} =0 and, finally, f*(u) N f*(v) = 0. O

THEOREM 194. If the system f is injective, then f~' is deterministic.

PROOF. Denote X = |J f(u) and suppose against all reason that Iz € X

uclU
and Ju € f~1(z), Jv € f~1(x) with u # v. This fact leads to the conclusion that
z € f(u)N f(v). Thus f(u) N f(v) # 0, a contradiction. O

THEOREM 195. The Cartesian product of the injective systems is injective.

THEOREM 196. Let be the injective systems f : U — P*(S(n))7 fl U —
P*(s™)), U,U{ € P*(S™) with UNU{ # 0. The parallel connection (f, f{) :
UNU] — P*(S™)) is injective.

PRrROOF. Take u,v € UNUj as distinct (if [U N Uj| = 1, then the property is
obvious). The fact that f(u) N f(v) =0, f{(u) N fi(v) = @ implies (f(u) X fi(u))N
(f(v) x fi(v)) =0 ie. (f, f1)(w) N (f; f1)(v) = 0. O

THEOREM 197. Consider the injective systems f : U — P*(S™) and h :
X — P*(S®), where U € P*(S™™), X € P*(S™). We ask that the inclusion

U f(u) C X be fulfilled. Then ho f is injective.
uelU
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ProoOF. If |[U| =1, then ho f is injective. Thus we can suppose that |U]| # 1.
Take two arbitrary distinct inputs u,v € U. In the formula

(oo A= | h@n | hi)=
z€f(u) z'€f(v)
= {y3z € f(u),3" € f(v),y € h(x) Nh(2')}
uw # v implies f(u) N f(v) =0, i.e. x # 2’ and eventually h(z) N h(z") = 0. O

THEOREM 198. Suppose that the systems f : U — P*(S™), g : V — P*(S™),
U,V € P*(S™) are both injective and, moreover, that the set

W = {ulu € UNV, f(u) N g(u) £ 0}
is mon-empty. Then f N g is injective.
PROOF. We can suppose that |W| # 1 and we take u,v € W as distinct.

The relation f(u) N f(v) = 0 shows that (f(u) Ng(u)) N (f(v) Ng(v)) = O. Thus
(fng)w)n(fng)lv) =0. O

THEOREM 199. If f is self-dual and injective, then Vu € U,Vx € f(u),T ¢ f(u).

PrOOF. We have U = U*, thus Yu € U we obtain u € U. Moreover u # u, thus
from the injectivity f(u) N f(u) = 0 and, by applying the self-duality hypothesis,
we get 0 = f(u) N f*(@) = f(u) N {Z]x € f(u)}. O

REMARK 58. The non-anticipation of f: ¥Vt € R, Yu € U, Yv € U,

Uj(—o0,t) = Vl(—o0,t) = 17)(=00,g)|Z € f(1)} = {Y)(—o0,gly € f(v)}

is related to the injectivity in the following manner. Let u,v € U be such that 3ty
With U|(—oo,ty) = V|(=oo,te) and u(to) # v(te). Then Yx € f(u),Vy € f(v) we have
Z)(—o0,to] = Y|(—o0,to] and ' > to, z(t") # y(t').

Like in Remark 56, we can give new definitions of injectivity in the spirit of
Definition 68: ¥Vt € R,Yu € U,Yv € U,

U|(—o0,t) 7é U|(—o0,t) = {x\(foo,t”x € f(u)} N {y|(foo,t]|y € f(’l))} = Q)a
vVt e R,Vu e U,Yv € U,

Uj[t,00) 7 Vlt,o0) == Tt € R {2 o0y € f(1)} N {Yjpp,00) [y € f(0)} =0

etc.
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15. Huffman systems: open problem

REMARK 59. In this section, in order to highlight its symbol f, its input u and
some possible state x € f(u), a system will be drawn like in Figure 1.

If f: S — P*(S™) has the input equal to the output like in Figure 2, then
it defines the autonomous system X C S by

X ={z|z € f(x)}.
Thus the states of the feedback system are somehow fixed points of f. Here is the
first Open problem: does f have fized points? In what conditions? For the simple
example
(n) _ 0,z 7é 0
Ve e S\ f(x) { Lo=0
the answer to the previous question is negative.
Consider two systems f,g: S™ — P*(S™) and the autonomous system X C
S™M) from Figure 3. We have

X ={z|Fu € g(z),z € f(u)}.

Furthermore, the system f : U x S™ — P*(SM) U € P*(8™) gives the
feedback system from Figure 4. Denote it by h : U — P*(S(")). The system h is
defined as
Vu € U, h(u) = {z|z € f(u,x)}.
The idea is that of putting in the feedback loop from Figure 4 some system
g:Sm - P*(S(”)) like in Figure 5. The input-output association represented by
this new system is defined as

Vu € U, h(u) = {z|3y € g(z),z € f(u,y)}.
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A still more general case: we have the systems fi : U x S — P*(S®),
f2: Ux S — P*(SM) U € P*(S™) and g : S™ — P*(S™)) and the situation
from Figure 6, where by f we have denoted the parallel connection (f1, f2). The
system h : U — P*(S(p"‘”)), giving the input-output association from Figure 6, is
described by

(15.1) Vu € U, h(u) = {(z,2)|Fy € g(x),z € f1(u,y),z € fo(u,y)}.

There is a special case of the previous system h, namely when f, g are com-
binational systems and g has the identical generator function: for a function F :
B x B" — BP x B" the following properties are satisfied

(15.2)  V(u,y) € U x $™,3lim F(u(t),y(t)) = ¥(z,2) € f(u,y),
(tlim z(t), tlim x(t)) = tlim F(u(t),y(t)),
(15.3) Ve e S, Eltlirn x(t) = Yy € g(z), tlim y(t) = tlim z(t),

i.e. f and g eventually compute F and lg» : B — B™. This special case is called
[14] the Huffman model of the asynchronous circuits.

Open problem characterize the class Huf f of the systems satisfying:

a) Vh € Huf f,h has a Huffman model, i.e. f,g and F exist making (15.1),
(15.2), (15.3) true;

b) for any f,g, F making (15.2), (15.8) true, (15.1) defines a system h € Huf f.

The systems h € Huf f are called the Huffman systems.

The combinational systems, i.e. the systems with the property that there is
some Boolean function -called generator function- making statements like (15.2),
(15.3) true have been met for the first time in Section 5 of this chapter in a special
case, called “ideal’. Such systems will occur again in Ch. 8 dedicated to stability.

We have the possibility in the definition of the Huffman systems to choose f = F
i.e. f is an ideal combinational system with d = 0. With the notation F = (Fy, Fy),
where F1 : B™ x B" — BP and F; : B™ x B™ — B™, we get the following

Open problem characterize the class Huf f' of the systems that satisfy the
requirements:
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a)Vh € Huf f', F and g exist such that

(15.4) h(u) = {F(u,y)ly € g(Fa(u, y))}
and (15.8) are true;

b) For any F and any g that makes (15.3) true, the equation (15.4) defines a
system h € Huf f’.






CHAPTER 6

Accesses, transitions and transfers

This chapter is devoted to the properties describing the manner in which the
states of a system are accessed or transferred. Related with these, the synchronicity
is treated too.

Let be u € U. The access of the states z € f(u) to p € B™ is the property
of existence of some ¢t € R such that z(t) = p, i.e. all x € f(u) take the value p
sometime. By the consecutive accesses of the states z, first to p/ € B™ and then
to p’” € B, it is understood the property

Vz € f(u),3t € R,z(t) = 1’ and 3" > t,z(t') = p”.

In this statement we note the existence of the restrictions x4 of x € f(u), called
the transitions, with z(¢t) = ¢/ and z(¢') = p”. They show how [ transfers its
states from one value to another. By the transfer of f, under u, from p’ to p” it
is understood a set of such transitions.

1. Access

REMARK 60. Let be the system f : U — P*(S™), where U C S is non-
empty. We state the following properties:

(1.1) Ju e B",Jue UVr € f(u),3t € R,z(t) = u;

(1.2) Ju e B",Jue UVx € f(u),Ity € R,Vt < to,z(t) = u;
(1.3) JueB",JueUVre f(u),3ty e R,VE> ty,x(t) = 1
(1.4) Jue B, Jue UV e f(u),Vty € R, 3t > to,x(t) = 145

(1.5)  36>0,3peB™,Jue UVx € f(u),Ity € R,Vt € [to, to + 6], 2(t) =

(1.6) JueB",Jue U3t eR,Vre fu),z(t) = u;

(1.7) Ju e B", 3ue U, 3ty € RVt < ty,Vz € f(u),z(t) = u;
(1.8) JueB", JuelU, Ity e RVt >ty Vo€ flu),x(t) =
(1.9) Ju e B, Jue UVt e R, 3t > tg,Vr € f(u),z(t) = 1

(1.10) 36 > 0,3p € B",Ju € U, 3ty € R, V¢ € [to,to + 6], Va € f(u),z(t) =y,

99
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where the implications are

(1.6) <= (1.10) <= (L.7)
\ \ U
(11) < (15) < (1.2)
f f
(14) < (1.3)
() ()
(1.9) < (1.8
3 3
(1.6) (1.10)

(1.1) is the weakest and therefore the most general property. It expresses the
idea that all the possible states of f take a common value p if we choose suitably the
input. It is satisfied, for example, by the deterministic systems and so are (1.2),
(1.6) and (1.7).

(1.2) and (1.8) bring in this context the ideas of race-free/constant initial/final
states that, in the version from Ch. 4, (2.2), (2.3) and (2.5), (2.6) were defined by

Vu € U,3u € B",Vx € f(u),3ty € R,Vt < tg,z(t) = p,

Ju € B",Vu e U,Vx € f(u), Tty € R,V < tg,x(t) = ,

Vue U, 3p e B" Vo € f(u),3ty € RVt > ty,2(t) = p,
JueB",VueUVr e f(u),3ty € RVt >ty x(t) = p.

A system f that satisfies (1.2) (respectively (1.3)) has two subsystems fo C f1 C f

obtained by the restriction of the inputs to two subsets Us C Uy C U such that f;

has race-free initial states and fo has a constant initial state (respectively f1 has

race-free final states and fo has a constant final state): for example, we can fix

some u° € U making (1.2) (respectively (1.3)) true and then take Uy = Uy = {u}.

An interpretation of (1.4) is the following: there are p and w such that Vx €

f(u), there is some sequence (t) € Seq with Vk € N, z(tx) = p. This statement

may reflect the existence of the final state (stability) but, whenever it is true for two
distinct values u, p'

JueB", 3 € B", u# u',3u e UVz € f(u),
Vto € R, 3t > to, x(t) = pand 3" > to,z(t') = 1/,
it shows the fact that f enters a loop under the input u (instability).
(1.5) is the requirement ’f reaches under the input u some value . and remains
there for more than § > 0 time units’ and it has the variant:..Nt € [tg,to + ), ...

interpreted: °...remains there at least 6 > 0 time units’. This property should be
associated not only with inertia -if so, then any x € |J f(u) has a ’slow’ speed of

uelU

variation and what ‘slow’ means is indicated by 6 -but (ﬁso with the need in modeling
to get out of any region of uncertainty -if so, u is chosen in such a manner that it
keeps deliberately x € f(u) at the value p more than é time units.

(1.6),...,(1.10) repeat (1.1),...,(1.5) under a stronger form, when all possible
states of f take a common value p synchronously, simultaneously.

In addition, if f = X is an autonomous system, X € P*(S™), then (1.1),
(1.2),... take the form

JueB" Ve e X, It € R, z(t) = p,
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Ju e B, Vo € X, 3ty € RVt < g, z(t) = p,

with the interesting consequence that, in general, in the first of these two properties
Ju does not show the existence of a unique p, but in the second property the initial
value v of all x € X is unique. Other situations of unique existence of p occur also
when rewriting (1.8), (1.7), (1.8) in the special case of the autonomous systems.

DEFINITION 69. a) We call
Q={plpeB",FueclUVze f(u),It € R,z(t) = pu}

the set of the accessible (or reachable) values of (the states of) f. The
vectors pu € Q are called the accessible values of (the states of) f or, abusively,
the accessible states of f.

IfFQ #£0, ie. if (1.1) is true, we say that f has accessible values of the
states or, abusively, that f has accessible states. We use to say that the states
of f take (access, reach) the values 1 € Q) or that f takes the values p € ).

When (1.1) is fulfilled, we fix n € B™ and uw € U. The property

Ve e f(u),teR,z(t) =p

is called the access of (the states of) f, under the input u, to the value p.
We say that f(u) accesses (the value) .
Similar terminology and notations are given for the properties (1.2),...,(1.10)
and for the following sets:
b) the set of the accessible initial values of (the states of) f, see (1.2)
6 = {/J’|//’ € Bn75|u € U,\V’l' € f(u)75|t0 € R7Vt < t(),l‘(t) = /J’}a
c) the set of the accessible final values of (the states of) f, see (1.3)
P ={plp € B",Ju e UVr € f(u), 3ty € RVt > ty,x(t) = p};

d) the set of the accessible recurrent values of (the states of) f, sce

(1.4)
R={plpeB",JuecUVzx e f(u),Vts € R,3t > to,x(t) = pu};

e) the set of the accessible 5—persistent values of (the states of) f, see
(1.5)
Qs ={u|lp € B",Ju € U,Vz € f(u), 3ty € R, V¢ € [to,to + 6], z(t) = u};
a’) the set of the synchronously accessible values of (the states of) f,
see (1.6)
Qs ={u|lpeB™,JuelU,It e R,Vx € f(u),z(t) = puk;
b’) the set of the synchronously accessible initial values of (the states
of) f, see (1.7)
0s = {ulp € B, 3u € U,3to € RVt < to,Vx € f(u),z(t) = p};
¢’) the set of the synchronously accessible final values of (the states
of) f, see (1.8)
bs = ulp € B",3u € U, 3ty € RVt > ty,Va € f(u),x(t) = pu};

d’) the set of the synchronously accessible recurrent values of (the
states of) f, see (1.9)

Rs = {plp € B",Ju € U,Vity € R, 3t > to,Vx € f(u),z(t) = pu};
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e’) the set of the synchronously accessible 6—persistent values of (the
states of) f, see (1.10)

Qss = {p|p € B",Ju € U, Ity € R,V € [to, b0+ 6],Vz € f(u),z(t) = u}.

REMARK 61. The implications from Remark 60 generate the following inclu-
si0ns
Qe DO Qs D 64,
N N
O Qs D @6
U
> O
U
DENCIR
N
Qs Qés
for 6 > 0. On the other hand, another interesting property and another remarkable
set may be defined (the former implies all of (1.1),...,(1.10) and the latter is included
in all of Q, ...,Qss from Definition 69):
DEFINITION 70. If

JueB", JueUVz e f(u),Vt € R,z(t) = pu,

ODFCmC DD

then the set
Eq={plpeB",Fue UV < f(u),Vt € R,z(t) = u}

is called the set of the accessible equilibrium values of (the states of) f.
Any p € Eq is called accessible equilibrium value of (the states of) f, or
accessible equilibrium point (equilibrium state) of f.

THEOREM 200. If f is deterministic, then all values of the states

{flw)®)t e R,u U}

are synchronously accessible.

PrROOF. We have

Qs ={plpeB™,JuelU,It e R,Vx € f(u),z(t) = u} = {f(v)(t)[t e R,u e U},

indeed. O

REMARK 62. In general, the set ©g of the initial values of f

©o = {plp e B",Ju e U,z € f(u), Tty € R,Vt < tg,z(t) = u}

does not contain only accessible values. More ezxactly, ©f C ©g and there is the
possibility that ©y = (©g # 0 is always true). We have the

THEOREM 201. a) If ¢, is uni-valued, then ©f # 0.

b) Suppose that [ is deterministic. Then ©f # 0 and ©) = O), = 0.

PROOF. a) The fact that ¢, is uni-valued, i.e. that f has race-free initial states

Vu e U,3p € B", Vx € f(u),Ito € RVt < to,z(t) = p

implies (1.2), i.e. ©f # 0.
b) ¢, is uni-valued, thus ©f # @) from a). The statement is obvious. O
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EXAMPLE 77. Define X C S by X = {0,1} (the constant functions). The
autonomous system f = X does not have accessible values because for any p € B
(and for any choice of the input w € U ), one of 0,1 differs from p.

EXAMPLE 78. Let be the function F' : B™ — B"™ and d € R. The system Fy
has synchronously accessible values like any other deterministic system.

EXAMPLE 79. If the states of f posses the property: there is 6 > 0 such that
Yu € U, Ve € f(u),

Dz1(t) U...U Dx,(t) < U (Dz1(&) U...U Dzp(8))
Ee(t,t+6)
(any discontinuity is followed by continuity more than § time units) and if f has
accessible values of the states, then f has accessible 6—persistent values of the states.

2. Access time

DEFINITION 71. Suppose that Q # 0. The property (1.1) defines the set
Tu,;z = {t|t € va(t) = ,U}

called the set of the access time (instants) of x € |J f(u) to the value i € Q.
uelU

REMARK 63. Let be pp € Q and x € |J f(u). Then T, , # 0 implies, by the
uelU
right continuity of x, that we have

Vt €T, ,,3e>0,[t,t+¢) CTyp.

On the other hand, there are definitions similar to the previous one for the accesses
(1.2),...,(1.10) also, being fulfilled properties of the kind: in (1.2)

Vi€ Ty q, (—00,t) CT)q,
where p € 0, in (1.3)
Vt €Ty q,[t,00) C Ty,
where p € O ete.

3. Consecutive accesses

REMARK 64. Consider the system f. First of all, remark the equivalence of the

statements
' € B, FueUVz e f(u),It e Rz(t') =y

Ju' e B, " € B, JueUVr € f(u),H e R,x(t') =/ and It" € R, z(t") = u”’
' e B, 3" € B",JucUVzx € f(u),It e Ryx(t') =y and 3" >t x(t") = "
obtained from (1.1): while in the second statement it is possible to take u' = p”
and t' = t", in the third we can take u' = ' again and, from the right-continuity
of =, t' very close to t'. In other words, the access of the states of f, under some
input u, to some value p' is equivalent to the consecutive accesses of the states of
f, under some input u, first to some value p', and then to some value p”.

Whence the suggestion of mutually combining (1.1),...,(1.5) and we get the
following groups of properties.

Group 1 of properties, where we combine (1.1) with (1.1),...,(1.5):

(3.1) Ju' € B", 3" € B",Ju € U,Vx € f(u),
W eR,z(t')=p and " >t 2(t") =",
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(3.2) ' € B™, 3" € B",Ju € U, Vx € f(u),

I e R, z(t') = p' and 3t > ', Vt" < t,x(t") = u”,
(3.3) Ju' € B", 3y € B",Ju € U,Vx € f(u),

I eR,z(t') = p' and 3t € R,V > t,x(t") = u”,
(3.4) Ju' € B", 3" € B",Ju € U,Vx € f(u),

It e Ryz(t') = 1/ and Vt € R, 3" > t,z(t") = u”,
(3.5) 36 > 0,3’ € B", 3" € B",3u € U,Vx € f(u)

I eR,z(t')=p and It >t — 6,Vt" € [t,t + 8], z(t") = u".
Group 2 of properties, where we combine (1.2) with (1.1),...,(1.5):

(3.6) Ju' € B", 3y € B",Ju € U,Vx € f(u),
It eRV <t,z(t')=p and 3" € R, z(t") = 1",

(3.7) Ju' € B", 3y € B",Ju € U,Vx € f(u),

It e RV < t,z(t') = ¢/ and It1 € R,V < tq,2(t") = u”,
(3.8) ' € B™, 3" € B",Ju € U, Vx € f(u),

It e R,V < t,z(t')=p and Ity € R,VE" > tq,2(t") = 1",
(3.9) Ju' € B", 3y € B",Ju € U,Vx € f(u),

e RV <t,z(t')=p and Vt; € R, " > t1,2(t") = 1",
(3.10) 36 > 0,3 € B", 3" € B",3u € U,Vx € f(u),

It e R,V < t,z(t') = p/ and 3ty € R,V € [t1,t1 + 8], 2(t") = u.
Group 3 of properties, where we combine (1.8) with (1.1),...,(1.5):

(3.11) ' € B™, 3" € B",Ju € U, Vx € f(u),
FeR,VE >ta(t)=p and H" >t x(t") = u”,

(3.12) Ju' € B", 3y € B",Ju € U,Vx € f(u),

It e R,V > t,a(t) =y and Ity > t, V" < ty,x(t") = u”,
(3.13) Ju' € B", 3" € B",Ju € U,Vx € f(u),

It e RV > t,z(t') = ¢/ and 31 € R,V > tq,2(t") = 1",
(3.14) ' € B™, 3" € B",Ju € U, Vx € f(u),

It eRV >t z(t')=p and ¥Vt € R, " > t1,2(t") = 1",
(3.15) 36 > 0,3y € B", 3" € B",Ju € U,Vx € f(u),

It eR NV >t x(t')=p and 3ty >t — 6,Vt" € [t1,t1 + 6], z(t") = "
Group 4 of properties, where we combine (1.4) with (1.1),...,(1.5):

(3.16) Ju' € B", 3y € B",Ju € U,Vx € f(u),
Vte R, 3t >t z(t') = p' and " >t x(t") =",
(3.17) ' € B™, 3" € B",Ju € U, Vx € f(u),

Vte R, 3t >t,x(t') =p and 3ty >t/ V" < ty,z(t") = u”,
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(3.18) ' € B™, 3" € B",Ju € U, Vx € f(u),
Vte R, 3t > t,x(t') = 1 and 3ty € RV > t1,2(t") = 1",
(3.19) Ju' € B", 3" € B",Ju € U,Vx € f(u),
Vte R, 3t >t,x(t')=p and Vt, € R, 3" > t1,z(t") = 1,
(3.20) 36 > 0,3y’ € B", 3" € B",Ju € U,Vx € f(u),
Vte R, 3t > t,x(t') = ' and Ft; > t' — 6,Vt" € [t1,t1 + 6], z(t") = p”.
Group 5 of properties, where we combine (1.5) with (1.1),...,(1.5):
(3.21) 36 > 0,3y’ € B", 3" € B",Ju € U,Vx € f(u),
e R,V €[t,t+6,z(t') = and 3" > t,z(t") = ",
(3.22) 36 > 0,3y € B", 3" € B",Ju € U,Vx € f(u),
e RV €[t,t+6],z(t') = and 3ty > t,Vt" < t1,z(t") =",
(3.23) 36> 0,3 € B", 3" € B",3u € U,Vx € f(u),
e RV €[t,t+6],z(t') =y and 3t; € R,V > t1,2(t") = 1",
(3.24) 36 > 0,3 € B", 3" € B",3u € U,Vx € f(u),
It e R,V €[t t+68),z(t') = p' and ¥Vt € R, 3" > t1,2(t") = 1",
(3.25) 36 > 0,38 > 0,3y € B", 3y € B",3u € U,Vz € f(u),

It e R,V € [t,t+68],2(t') =1 and 3ty >t — &' V" € [t1,t1 + 8], 2(t") = .

From (8.1), ...,(3.25), the weakest requirement is (3.1).

All properties (3.1), ...,(3.25) consist in the existence of two accesses and an
order of reaching the accessible values, first i’ and then u”, where ' and p' may
be equal. The accesses take place under the same input u and we have Va € f(u),
€Ty, W' €Ty, t/ <t

As we can see, these 25 properties do not take into account the synchronous
accesses (1.6),...,(1.10). In writing them we have tried to simplify the exposure, but
we must keep in mind that there are synchronous special cases of these statements.
For example, (3.1) has the following special cases of synchronicity of the first access,

respectively of the second access, respectively of both accesses:
I e B", 3" € B, Ju e U,

3t e R,Vx € f(u),z(t') = ¢/ and 3" > ', x(t") = u”,
I e B", 3" € B, Ju € U,

" e R, Vo € f(u), 3t <t z(t') = and x(t") = 1",
I e B", 3" € B, Ju e U,

3t e R,3t" > ¢/, Vo € f(u),z(t') = p and z(t") = u".
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DEFINITION 72. a) We call
Vo € f(u),3t € Ryz(t') = p and " > ', z(t") = 1}
the set of the couples of consecutive (or successive) accessible values of
(the states of) f.

If Q® Q # 0, meaning that (3.1) is satisfied, we say that f has consecutive
accesstible values of the states or, abusively that f has consecutive accessible
states, while for (p/', ") € Q @ Q that there is uw € U with the property that the
states x € f(u) take (access, reach) first the value p’, then the value p".

Suppose that (3.1) is true and let us fix p', p”, u. We have the property

Vr € f(u),3t e Ryz(t') = ' and 3" > ', x(t") = ",
that we call the consecutive accesses of (the states of) f, under the input u,
first to 1/, then to i/'. When it is true, we say, sometimes, that f(u) transfers
lu/ tO ‘UN.

The terminology and the notations are similar for the properties (3.2),...,(3.25)
and for the following sets:

b) the set of the couples of consecutive accessible values (u',p") of
f, w’-initial (see (3.2))

Qe 6y ={( )Wy eB",Juel,
Vo € f(u),3t e Rya(t') = p' and 3t > ' Vt" < t,x(t") = u"};

c) the set of the couples of consecutive accessible values (i, p) of
f, 1’ 6—persistent, "’ §'—persistent (see (3.25))
Qé ® Qé’ = {(/1’/71//)'/1’/7/// € Bn7E|u € U,\V’l' € f(u)7
It eR,VE €ft,t+68,z(t')=p and 3ty >t — &' V" € [t1,t1 + &), z(t") = u"}.
THEOREM 202. a) The property (3.1) is equivalent to (1.1).
b) The properties (3.2), (3.6), (3.7), (3.10) and (3.22) are equivalent to (1.2).
¢) The properties (3.3), (8.11), (3.13), (3.14), (3.15), (3.18) and (3.23) are
equivalent to (1.3).
d) The properties (3.4), (3.16) and (3.19) are equivalent to (1.4).
e) The properties (3.5), (3.21) and (3.25) are equivalent to (1.5).
f) The properties (3.12) and (3.17) are equivalent to
(3.26) JueB™,JueUVxe f(u),Vte R,z(t) = p
i.e. the existence of a point of equilibrium.
PRrROOF. In general, these equivalencies are easy to prove. We give the example
of (3.2) <= (1.2).
(3.2) = (1.2) From (3.2) we get
Ju”" € B",Jue UVz € f(u),3t e R,V < t,z(t") = pu",
ie. (1.2).
(1.2) = (3.2) From (1.2) we have
' € B",Ju e UVx € f(u),It € R, < t,z(t') = p" and Vt" < t,z(t") = u",
" € B", Fue UV € f(u),H e R,x(t') = py" and 3t > ' V" < t,z(t") ="
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M g proparty
accessible arbitrary value accessible initial vale (3.2)
aceessible initial value aceessible arbitrary value (3.6)
aceessible initial value aceessible initial value (37
accessible initial value accessible & - persistent value | (2.10)
aceessible 4 — persistent value aceessible initial value (2.22)

FIGURE 1. The properties that are equivalent to (1.2)

M g proparty

aceessible arbitrary value accessible final value (3.3
accessible final value aceessible arbitrary value (5110
accessible final value accessible final value (313
accessible final value accessible recurrent value (2.1
accessible final value accessible J — persistent value | (3100
accessible recurrent value accessible final value (3.18)
aceessible 4 — persistent value accessible final value (2.23)

FIGURE 2. The properties that are equivalent to (1.3)

and (3.2) follows. O

COROLLARY 1. From (1.1),...,(1.5),(3.1),...,(3.25),(3.26) the following proper-
ties differ from each other.

a) (1.1):
JpeB", Jue UV € f(u),It € R,z(t) = p,

b) (1.2):
Ju € B, Ju e U,Vx € f(u), Tty € R,Vt < tg,x(t) = p,

c) (1.9):
JueB", JueUVre f(u),3ty €c R,VE>ty, x(t) = p,

@) (1)
Ju e B, Jue UVz € f(u),Vty € R, Tt > to,x(t) = p,

e) (1.5):
36 > 0,3p € B", Ju € U,Vx € f(u), 3ty € R,Vt € [tg,to + 6], x(t) = 1,
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H A | property
accessible arbitrary value | accessible recurrent valus (3.4

aceessible recurrent value | accessible arbitrary valee | (3.16)

accessible recurrent vahie | accessible recurrent valie | (319

FIGURE 3. The properties that are equivalent to (1.4)

M i | property
aceessible arbitrary value accessible J — persistent value (3.0
accessible O — persisient value accessible arbitrary value (321
accessible § — persisient value | accessible § - persistent value | (3.23)

FIGURE 4. The properties that are equivalent to (1.5)

713 | A | property
accessible final value accessible initial value | (3.12)

accessible recurrent vahie | accessible initial value | (3.17)

FIGURE 5. The properties that are equivalent to (3.26)

) (3.26):
Ju e B, JueUVr € f(u),Vt € R,z(t) = p,

g) (3.8):
Ju' € B", 3" € B",Ju € U,Vx € f(u),

It e RV < t,z(t') = ¢/ and I, € R,V > t,2(t") = 1",

h) (3.9):
Ju' € B", 3" € B",Ju € U,Vx € f(u),

It e RV < t,z(t') = p/ and Vt; € R, Ft" > t1,2(t") = u”,
i) (3.20):

36 > 0,3 € B", 3" € B",3u € U,Vx € f(u),

Vte R, 3t > t,x(t') = ' and Ft; > t' — 6,Vt" € [t1,t1 + 6], z(t") = ",
J) (3.24):
36 > 0,3 € B", 3" € B",Ju € U,Vx € f(u),

Jte RV € [t,t+6],z(t') = ¢/ and Vi, € R, Ft" > t1,2(t") = u”.
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REMARK 65. In Figures 1,...,5 we have repeated the properties that are equiv-
alent to the Corollary’s items b),....f) as stated in Theorem 202.
Some of the implications characterizing the properties from the Corollary are
the following
(3.8) <= (3.26) = (3.20)
U J
(3.9) = (3.24)

4. Transition

DEFINITION 73. Let be z € S™ and let t1 < to be two real numbers. The
restriction y = x|, +,) 15 called the transition of x from (the value) x(t1) to
(the value) x(t2)!. [t1,t2] is called the support interval of the transition and the
number to — t1 is called the duration of the transition.

If x is constant on [t1,ts], then the transition is called constant, or trivial
and if x is coordinately monotonous on the interval [t1,ts2], then the transition is
called monotonous.

DEFINITION 74. We have the following partial law of composition of the transi-
tions. Consider z', 2" € S and the numbers t; < ty < ts; if @' (t2) = 2" (t3), then
there is x € S satisfying

Vt € [t1,t3],x(t) = { 2/ (t),t € [t1,ta]

' (t),t € [ta,ts3]
Usually, the transition v = x|[, 4,) is denoted by 7' V~" and is called the union of
Y =y, 4, withy = x/‘/[tQ 1) (i this order).

REMARK 66. A similar terminology is used for the restriction y|_og 1,1, called
the transition of x from x(—oo 4 0) to x(ta). If o', 2" satisfy «'(t1) = 2" (t1), then
T exists satisfying
x/(t)7 te (7007 tl]

Vt € (=00, ta], z(t) = { 2" (t),t € [t1, 2]

For+ = xf(ﬂ)o,tl],’y” = xﬁtlh], T|(—oo,ts] 18 denoted by v =~"V~y".
Other constructions of the same kind are possible.

5. Set of support intervals

DEFINITION 75. If Q ® Q # (0 (see Definition 72 a)) then the property (3.1)
defines a set analogue to T}, , from Definition 71, namely
T e = [t [ <" 2(t') = p’ and x(t") = p"},

called the set of the support intervals of the transitions x|y 1, where (1, ii'") €

QQandz e |J f(u).
uelU

ExaMPLE 80. The system f:S — P*(S) defined by
AGES0!

§elt—1,¢]

Lin geometry these functions may be called curves; another terminology could be that of path
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satisfies |J f(u) = S. For x = X[o,1) D X[2,00), T € S we have
u€esS

Tope = {[t',t"]|t' <t',t' € (—00,0) U[L,2),t" €[0,1) U [2,00)},
T ={[t,t"]|t' <t",¢,¢" €]0,1)U[2,00)}.
REMARK 67. Definitions similar to Definition 75 take place when starting with

the remainder of the properties of consecutive accesses (3.1),...,(3.25). We give the
example of (3.20), that defines the set R ® Qs, § > 0 like this:

R& Qs = {1/, 1)y, 1" € B",3u € UV € f(u),
vte R, 3t > t,a(t') = p' and Ity >t — §,Vt" € [t1,t1 + 6],z (t") = u''}.
If (W, 1) € R®Qs and x € |J f(u), then (3.20) defines the set T, o » satisfying:
uelU

(tr), (t),) € Seq exist such that Vk € Nty € Ty o, [t 1), + 6] C Ty o, ty < 1, + 6
and [tk,t;f + (5] S Tu’,u”,w-

6. Transfer

DEFINITION 76. Fiz in (8.1) /', u"” € B™ u € U. The consecutive accesses of
the states of f, under u, to p' and u” in this order
Vo e f(u),3t e Ryz(t') = ' and 3" > ', z(t") = 1"’

define the set of transitions

W= =Lzl € T ar @ € f(u)}
called the full transfer of (the states of) f, under (the input) u, from (the
value) p' to (the value) " and its non-empty subsets

Wbl =
are called the transfers of f, under u, from ' to p”.
REMARK 68. Similarly to Definition 76, we have that
Vo € f(u), 3t € R, x|(—oopy = i and 3" >t/ x(t") = p”
defines the full transfer

,U/ = ,UU = {$|(_Oo7t//]|(*OO,tU] S Tuﬁu”,xvfc S f(u)}

Like in the case of Ty .., when we write ' — " the system that this transfer
refers to is kept in mind. If necessary, in order to avoid ambiguities, either we
shall explicitly mention the system, or we shall write it as a subscript: (' = p") s

u
(W = u")s

The inclusion, the intersection and the union of the transfers are defined by the
usual inclusion, intersection and union of the sets. Another union of the transfers,
denoted by V not by U and induced by the union ~' vV ~" of the transitions, will be
giwen in Definition 78.

The dual transfer of i/ 5 ' is

(l},l i MI/)* = {fl[t/,t””x‘[t’,t”] = l},l i /,L”}7
(W' = 1) C{Zjp |t ") € Ty 77 3, T € [F (@)}
1t is a transfer of the states of f*, under the inputu, from the value 1 to the value
,UU-
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A transfer of f=1 is
N SN ¢ {U‘[tr,tu”[t/,t”] € T)\r’)\r/,u,u € fﬁl(w)},

where ', " € B™ and x € |J f(u).
uelU
The transfers of the Cartesian product f X f', of the parallel connection (f, f1)

and of the serial connection ho f are the following non-empty subsets

(W, 1) " () ©
c{(z x xl)|[t',t”]|[t/>t”] € Ty e N T v ary @ X @' € (f % f')(u x ')},
(W' 1) = (W', 7") C
C{(@ x @) o[t 8] € Ty v O Tt i s @ X 2" € (f, f1)(0) 1,
V=V C e[t ] € Torunzy 2 € (o f)(u)}
and the transfers of f N g, f U g satisfy

'u/ = 'u// C {x|[t'7t”]|[tl7tﬂ] € T#/,#”@vx € (f ﬂg)(u”)},

W= i C Ay |l 8] € Ty v w € (F U 9) (@)},

where /1" € B, {7 e BY v/ " eBP,uelU uw eU,velUnU,u e
@BlreunV,f@)Ng@) 40}, ucUUV; U,V e P<(S™), X € P*(S™), U e
P*(8™")) are the domains of f}, g, h,f" and it was presumed that (f, f}),ho f, fNg
exist.

All these definitions are also possible by replacing (3.1) with one of (3.2),...,(3.25).

On the other hand, in the transfer i/ — u", one or both accesses may be
synchronous. We have the

DEFINITION 77. If in (3.1) the accesses are synchronous
3t e R,3t" >t/ Vo € f(u),z(t') = 1’ and z(t") = u”,
with p!, 1, u fized, then the transfer i/ = p' is called synchronous.

DEFINITION 78. Let u % pi/, pi/ = 1" be two transfers, w € U for which we have
supposed that (u, 1), (1, 1) € Q& Q and, moreover, that the following property

Vz € f(u),3t € R,z(t) = pand ' > t,z(t') = p' and 3" > ', z(t") = "

is satisfied. Define the partial law of composition
(WS )V S p) =T en>p, 3 e Sp' y=+"Vvy"}

The transfer (u — p')V (i’ = ") is called the union of the transfers p — u' and
W 5w (in this order).

ExXAMPLE 81. Let be the autonomous deterministic system f : S — S that
satisfies * = f(u) = xp1) for any u € U and choose p,p',p" € B, p = p" =
0, o/ =1. We have

Tore = {[t,t']|t € (—00,0),t" € [0,1)},
T00 ={[t'",t"]|t' € [0,1)," € [1,00)},
To0,0 = {[t. t"][t <t”,t,t" € (—00,0) U[L,00)},

u u

(0 = 1) V (1 = 0) = {x\[t,t”]Et/; [t,t/] (S T071,$, [t/,t//] S T1,07w} =
= {X0,10) et € (—00,0),t" € [1,00)},
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(0 % 0) = A{zjpemllt,t"] € Tooe} =
= {Xpnpenlt <ttt € (=00,0) UL, 00)}.

This example shows that, in general, we have (u = p')V (' = 1) C (= u”).

u
REMARK 69. ¢/ = u” gives all possibilities that x € f(u) reach first the ac-
cessible value pi', and then the accessible value " while ' — 1" ignores some of
these possibilities.

u u
The union (p = p') VvV (' = 1) creates no loss; it indicates the ways that
w, iy 1 may be accessed in this order, representing just some of the ways that
w, 1" may be accessed, in this order.

7. The transfers of the non-anticipatory systems

THEOREM 203. Let the system [ satisfy the conditions:
a) U is closed under translations and under ’concatenation’

vd € R,Vu € Uuor? €U,
Vte R,Vu € UV €U, U+ X(—oop) DV X[t,00) € Us
b) non-anticipation Vt € R, Vu € U, Yv € U,
U|(—o0,t) = VJ(=o0,t) = {T|(—oc,j|T € F(u)} = {y)(~c0,ly € f(V)};
¢) non-anticipation*® ¥Vt € R, Yu € U, Yv € U,
(U[[t,00) = V|[t,00) and {x(t)|z € f(u)} = {y(t)|y € f(v)}) =
= {2,007 € f(W)} = {Y1t,00) [y € F(V)}

d) time invariance
Vd € R,Vu e U, f(uot?) = {zorlz € flu)};
e) ty, ta € R, ul,ut € U and p, ', 1" € B" are given such that

(7.1) Vo € f(u?), Ity < t1,2(to) = s
(7.2) Vo € f(u),z(tr) =4/,

(7.3) va' € f(ul), 2 (t) = 1,

(74) va' € f(Ul), dt3 > tz,l’l(tg) = ,u”.
Put d =1t1 —ty. Then u € U defined as

(7.5) u=u’- X(=oo,t;) P (ut o7 “XJt1,00)
satisfies

(76) VI € f(ﬂ), Jty < tl,f(t()) = W,
(7.7) vz € f(u), 3ty > t1,z(ty) = p”.

Thus, if f(u®) transfers u to yi’, the second access being synchronous, and if f(u')
transfers p' to p”, with the first access synchronous, then f(w) transfers p to u'.
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PROOF. w belongs to U indeed, because of a). We remark that we have

(78) ;l‘,ljl(,oo7t1) = u?(7m7tl).
From (7.8) and b) we infer
(7.9) {T)(—oon )T € F(@)} = {@)(—oounle € f(u”)}

and if, in addition, we take into account (7.1), (7.2), then we get the truth of (7.6)
and of

(7.10) vz e f(u),x(t1) = p'.
Let be now some arbitrary 2/ € f(u! o 7%). From d) we obtain the existence of

2’ € f(ul), such that 2" = 2’ o 7¢ and we have 2" (t;) = (z' o 79)(t1) = 2/ (t2) = i/
(we have taken into account (7.3)) thus

(7.11) vz € fur o), 2" (t1) = 1/

and, similarly,

(7.12) Vo € flub o), 3ty >ty 2" (ty) = .
We see that

(713) ﬂ\[tl,oo) = (ul o Td)choo).

The hypothesis of c) is fulfilled by t1, @ and u' o 7%, as follows from (7.10), (7.11)
and (7.13). The conclusion of c) expresses the fact that

(7.14) {Z)101,00)|T € F@)} = {affy, o0)l2” € fu! 0 7%)}
and, by (7.12), we get the truth of (7.7). O

REMARK 70. We put the problem of defining the union of the transfers (u —
WYV (i Sy in a form different from the one in Definition 78, where we had
w = v. In order that this fact becomes possible, we consider that the following
requirements are natural: there is t' € R such that

(7.15) Vo € fu),2(t') = 1,

(7.16) Yy € f(v).y(t') =1/,

(717) u|(—oo,t’) == 'U|(—oo,t’)7

plus the non-anticipation of f demand that, together with (7.17), imply the truth of
(7.18) {2 (—oonlr € f(u)} = {y)(—c0ply € f(v)}.

At this stage the non-anticipation® requirement is crucial, since it allows us to pass
from the input w to the input w - X(_oo 1) BV Xpr 00)-
This is the idea from Theorem 203. Starting with the following transfers, where
t1 and ty are fized
)
u
w= //’, = {xl[t07t1]|3t0 <t1, [tovtl] € Tu,uﬂzax € f(uo)}a
ul
po= o =)y, g Bts > b, [ta, t3] € Ty o, € f(u')}
the theorem shows the existence of the transfer
0

u UIOTd

(m=p)v i = p')=
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= {gl[to,té]EtO <1y, [t()vtl] € TNyM’@’ Hté > 1y, [tl,té] S TH’W«”:%’% € f(ﬂ)}
The price that we pay in order to make this construction possible is the synchronism
of the access of the states of f, under the inputs u® and u' to the value p'. In
addition, because (7.15), (7.16) are fulfilled under the form: u = u®,t' =t; in the
first case, and under the form y = x',v = u',t' =ty in the second case, we need
to translate the states ' and the input u', 2’ € f(ul) with d time units. Thus the
requirement of time invariance of f occurs too.

8. Synchronicity

REMARK 71. Consider the system g : V — P*(S™), V € P*(S(™) and start
with the property (1.1), written for this system

JpeB", JueV,Ve € g(u),It € R,z(t) = p.
The subsystem f : U — P*(S™), U C V, defined by
U={ulueV,3ueB" Vx e g(u),It e R,z(t) = pu},
Yu e U, f(u) = g(u)

satisfies

(8.1) Vu e U,3p € B™, Vx € f(u), 3t € R, z(t) = p.
We mention also the following stronger variants of (8.1):

(8.2) Vu e U,3pe B, 3t e R,Vx € f(u),z(t) =p
and

(8.3) Jte R,Vu € U,Ju € B",Vz € f(u),z(t) = .

The reader is invited to reflect on these properties. Starting with the hypothesis that
the system g has accessible values, we have defined its subsystem f satisfying (8.1),
such that with each input uw € U we can associate the set

Qu = {plp € B",Vx € f(u),3t € R,x(t) = p}

of the accessible values of the states of f under the input u. Of course, 2, and

Q= U Q are the same for both systems f and g.
uelU
For arbitrary u € U, in general, the set of the access time T, , of x € f(u) to

the value p € Q,, depends on the choice of x. Remark that in (8.2) we have

VueU,3u € Quy (| Tuaw #0
z€f(u)
and in (8.3) we have

JAeP*R)VueU,IueQ,AC () Tha
T€f(u)
We say that the access time of the states of f to the value p is unbounded for
(8.1), bounded for (8.2) and fixed for (8.3).
When in (8.1) u € U satisfies |2y, > 1, two possibilities exist: the elements of
Q,, are reached by x € f(u) in an arbitrary order

Yu € U,V € Q,,Vx € f(u),3t € R, z(t) = p,
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or the order matters; then one of the following statements is true:

VueU,3k>1,3u' e B, .., 3 e B",Vz € f(u),3t; € R,...,3t, € R,

t) <ty <..<tpandxz(t;) = p' and ... and z(ty) = p*,

and
(8.4)  YueU3I(u")k>1 € B,V € f(u), Itr)r>1 € Seq, Yk > 1,x(ty,) = p*

respectively. The accessible values of the states must not be distinct in these for-
mulae and in (8.4) there is the possibility u* = u? = ... meaning a cyclic behavior
of the system

(8.5) Vu € U,3p € Q, Vo € f(u),I(tr)r>1 € Seq and Yk > 1, z(t;) = .
However, this special case is noticed also when looking at (8.1) and remarking that
there we can have

Vu e U,3p € Q,, Vo € f(u), T, is unbounded from above,

i.e. | 1S an accessible recurrent value.

Some non-exclusive special cases of (8.5) are those when

- 1= z(—o00 + 0), the system comes back infinitely many times in the initial
state,

-Vk > 1, tgy1 =ty + 6, where 6 > 0 is a parameter (pseudo-periodicity),

- =xz(0c0 —0), p is the final state.

We have the following stronger variants of (8.4):

(8.6)  Vue U, 3(u")k>1 € B", 3I(tp)r>1 € Seq, Yz € f(u),Vk > 1,2(ty,) = p¥;

(8.7)  Itr)r>1 € Seq,Vu € U, I(1")p>1 € B™, Vo € f(u),Vk > 1,2(t;,) = p~.

We relate the properties (8.4), (8.6), (8.7) to those of existence of the initial state
in Theorem 25 cases d), e), f), that we reproduce under the form:

(8.8) Vu € U, 3u’ € B, Vx € f(u), 3ty € RVt < tg,x(t) = u°,
(8.9) Yu € U,3u’ € B, 3tg € R,V € f(u),Vt < to,z(t) = u°,
(8.10) Jto € R,Vu € U, 3’ € B, Va € f(u),Vt < to, x(t) = .

In other words, f has race-free initial states with unbounded, bounded and fixed
initial time respectively. By putting together (8.4) with (8.8), (8.6) with (8.9),
(8.7) with (8.10) we get the following properties

(8.11) Vu € U,3(1*) € B",Va € f(u),

I(tx) € Seq, x(—o0 +0) = u° and Vk € N, z(t),) = p*,
(8.12) Vu € U, 3(u*) € B™,3(t,) € Segq,

Vi € f(u),z(—00 + 0) = u° and Yk € N, z(t),) = p*,
(8.13) A(ti) € Seq,Yu € U,

(k) € B™,Vx € f(u),z(—o00 4+ 0) = u® and Yk € N, z(ty) = u".
There (8.11),...,(8.13) represent the idea of predictability of the behavior of f that
we want to underline in this section. In (8.11), predictability is spatial only: for
any v € U, it is known that p°, ', ... are values that sometime will be reached by
all states of f, in this order. (8.12) is an intermediary situation that has previously
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occurred (under the form (8.2), for example), when we have used the terminology of
synchronous access(es). (8.13) is that situation when predictability is more complex,
temporal and spacial: the discrete time instants tg,t1,... are known when for any
u, all states of f will take the values p°, u', ... depending on u € U.

Remark that a new nuance of the predictability of the behavior of f is obtained
by inverting u and p in the previous properties. For example we can replace (8.1)

b
’ JpeB" YueUVr e f(u),IteR,z(t) =p
and (8.11) by
I(u*) € B, Yu € U,Vx € f(u),
3(ty) € Seq,x(—o00 +0) = p° and Vk € N, z(ty,) = p*
respectively. These two conditions express the requirement that the system, irrespec-

tive of the choice of the input, reaches with its states certain points. For example
the first property might mean the existence of a (unique) initial (final) state.

DEFINITION 79. A system f that satisfies (8.12) is called weakly synchronous
while if (8.18) is fulfilled, then f is said to be strongly synchronous.

THEOREM 204. If the system g : V — P*(S™),V ¢ 8™ is weakly (strongly)
synchronous then any subsystem f C g has the same property.

THEOREM 205. If f : U — P*(S™),U € P*(S™) is weakly (strongly) syn-
chronous, then f* has the same property.

PROOF. For example, (8.12) implies
Yu € U*,3(p*) € B",3(ty) € Seq,Vz € f(q),
2(—00 +0) = u0 and Vk € N, z(ty,) = pF

wherefrom we have that f* is weakly synchronous. O
THEOREM 206. Let be the non-empty set X € S that we identify with the
autonomous system f = X. The system f is weakly synchronous if f is strongly
synchronous if
3(p*) € B", 3(ty) € Seq,Vz € X,
z(—00 +0) = u° and Vk € N, z(ty) = u".
THEOREM 207. If f is non-anticipatory: Vt € R,Vu € U,Vv € U,

U(—o0,t) = VU(—o0,t) = {x\(foo,t”x € f(u)} = {y\(foo,t”y € f(’l))}

and strongly synchronous, we fix a family (t) € Seq that makes (8.13) true. Then
for all k € N, the values p* depend on U(—o0,ty) ONLY.

PRrROOF. Let be some arbitrary k£ € N, ¢, € R and u,v € U such that Va €
fu),z(ty) = pF, Vy € f(v),y(tr) = w*. If w—ooty) = V|(—oo,ty)s rom the non-
anticipation of f we have that {z|_cc¢, |z € f(u)} = {Y(—ootu)ly € f(v)}. In
particular u* = p/¥, where k is arbitrary, so that the property is true for any k. O

THEOREM 208. If f is strongly synchronous and time invariant, then Yu €
U,Vz € f(u),x is the constant function.

ProOOF. The fact that f is strongly synchronous implies that it has race-free
initial states and fixed initial time. We apply Theorem 162. O
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REMARK 72. If we join (8.7) with the existence of the initial state in Theorem
25 case 1) (instead of f)) i.e. f has a constant initial state with fized initial time,
reproduced under the form

u’ € B", 3ty € R,Vu € U,Va € f(u),Vt < to,z(t) = 1,
we get
(8.14) I(ty) € Seq, I’ € B",Vu € U,
I(p*)s1 € B", YV € f(u), 2(—00 + 0) = u° and Vk € N, z(ty) = p*

(instead of (8.13)). The only difference between (8.18) and (8.14) is that in the last
property the initial state p° does not depend on the input wu.

DEFINITION 80. A system f that fulfills the property (8.14) is called initialized
strongly synchronous.






CHAPTER 7

Surjectivity, controllability and accessibility

Controllability and accessibility are fundamental concepts in the systems the-
ory. The wish to study them leads us easily to the conclusion that they do not
represent a common point of view of the researchers. Our presentation is made as a
continuation of the debates on the surjectivity of the systems. A comparison of our
concepts of controllability and accessibility with others existing in the literature is
included.

1. Surjectivity, remark

REMARK 73. There is the temptation of considering the surjectivity of f : U —
P*(SM), U € P*(S™) as defined by
VX € P*(S"™),3u e U, f(u) = X
and then of relating this concept to the first concept of injectivity from Definition
v Vu € UYv € Uyu # v = f(u) # f(v).
From these two definitions the bijections U — P* (S(")) should follow. The problem

is that we have good reasons to believe that such bijections do not exist and, because
we do not know examples for the previous property of surjectivity, we avoid it.

2. Surjectivity, the first definition

DEFINITION 81. The system f is surjective (or onto) if one of the following
equivalent properties is true:

a) Ve e S Jue U,z e f(u),

b) U flu)= 8.

uelU
REMARK 74. The definition of surjectivity starts with the idea of referring to
the states, and not to the sets of states. This is due to the fact that in that case
reasoning seemed to be blocked. It states that for a surjective system any state is
possible, if the input is appropriately chosen.
Note that if f is deterministic, then this definition of surjectivity coincides with
the usual one.

EXAMPLE 82. The system f:S — P*(5),
Vu € S, f(u) = {u,u}
is surjective. It is also self-dual.
EXAMPLE 83. Consider the system f : S — P*(S(™)) defined by

Vu e S, f(u) = {uglo € S({1,...,m})}.

It is obviously surjective and symmetrical.

119
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EXAMPLE 84. The system: f: S0 — P*(S(m),
Vu e S f(u) = {uorid e R}
is surjective and time invariant.

THEOREM 209. If f is a surjective system, then its initial state function ¢,
satisfies
Vu e B™, Ju e U, p € ¢p(u).

Proor. For Yu € B", we take some z € S with 2(—00 + 0) = u for which
there is some u € U such that z € f(u) and z(—o0o 4 0) € ¢g(u). O

THEOREM 210. Suppose that f is surjective and f C g, where g : V —
P*(SM). vV € P*(SU™) is some system. Then g is surjective.

PrOOF. For Va € S( there is some u € U such that 2 € f(u). Because u € V
and z € g(u), the statement of the theorem follows. O

THEOREM 211. The surjectivity of f implies the surjectivity of f*.

THEOREM 212. The Cartesian product of the surjective systems f : U —
P*(SM), U e P*(S™) and f' : U — P*(S")), U € P*(S™)) is surjective.

PROOF. Let z € S(+1) be arbitrary and we denote by z its first n coordinates
and by 2’ its last n’ coordinates. There is some u € U such that = € f(u) and there
is also some u’ € U’ such that 2’ € f'(v'). In other words z € (f x f/)(u xu). O

THEOREM 213. Let be the systems f : U — P*(S(”)), U € P*(S(’”)) and

h:X — P*(S®), X € P*(S™) such that the inclusion |J f(u) C X is true. If
uclU
ho f is surjective, then h is surjective too.

Proor. We have
Vze 8P Juel,ze (ho f)(u),

Vze 8P Jue U3z e f(u),z € h(z),
VeeS®) Iz e X,z € h(x).
]

THEOREM 214. Consider the systems f, h with the property that h is surjective

and |J f(u) = X. Then ho f is surjective. In particular the serial connection of
uclU
the surjective systems is surjective.

PRrROOF. Let z € S®) be arbitrary. The fact that there is x € X with z € h(x)
holds true from the surjectivity of h. Then there is u € U such that x € f(u). Thus
z € (ho f)(u). In particular, if f is surjective, then |J f(u) = X = S is true. O

uclU

THEOREM 215. The union of a surjective system with an arbitrary system is
surjective. In particular, the union of the surjective systems is surjective.

PrOOF. For any systems f,g we have f C fUg. If f is surjective then, by
Theorem 210, f U g is surjective. O

THEOREM 216. An autonomous system f = X is surjective iff X = S,
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THEOREM 217. Let F': B™ — B™ be a surjective Boolean function. Then the
ideal combinational system Fy is surjective for any d € R.

PROOF. Take arbitrary fixed d € R and z € S Let (tx) € Seq be a sequence
consistent with x

z(t) = 2(to — 0) * X(—oo,t0) () © T(t0) * Xto,61) () B T(t1) * Xty,0) () D -
The numbers A_1, A\g, A1, ... € B™ are chosen such that
F()\_l) = x(to - 0),
vk € N7F()\k) = x(tk)v
their existence being assured by the surjectivity of F. We get that the function
u(t) = A1 X(—ooto—d)(t) B A0 * Xtg—d,tr—a) (1) B A1 Xpty—d,to—a) (1) © -

satisfies
Fa(u)(t) = F(ut —d)) =

=F(A-1 X(—ooto—d) E = D) B X0 X[tg—dts—a) (E = D) A X[ty —dp—a)(E— D) D) =
=F(A1- X(—oo,to)(t) ® Ao - X[to,tl)(t) © AL X[tl,tQ)(t) ®..)=
=F(A-1) - X(—oo,to)(t) @ F(Ao) - X[to,tl)(t) ® F(A1) - X[tl,tQ)(t) ©..=
=2(to — 0) * X(—o0,t0) (t) B 2(t0) * X[to,¢,) (1) ® (1) - X[ty 1) (8) B ... = 2(2).

3. Possible and necessary surjectivity

REMARK 75. Let be the system f : U — P*(S™), where U C S™) is non-
empty. We state the following properties:

(3.1) VueB", JueU, 3z € f(u),3t € R,z(t) = ;
(3.2) VueB", Ju e UVz € f(u),3t € R,z(t) =
(3.3) VueB", Jue U3t e R,Vx € f(u),z(t) = ;
(3.4) Jt e R,VueB”, JueclUVr e fu),z(t) = p.

The implications:
(34) = (3.3) = (3.2) = (3.1)

hold. The interpretation of (3.1),...,(3.4) is simple: after relating the surjectivity
property to the sets X € P*(S(")) and to the states x € S, we relate it to the
values p € B™. The first property states that all p € B™ are possible values of the
states of f while the last three properties, that all p € B™ are necessary values of the
states of f for suitably chosen inputs. (8.2) and (3.3) mean that all values p € B™
are accessible, Q = B"™ respectively synchronously accessible, Qs = B™.

Note that any system f satisfying the surjectivity condition from Definition 81
satisfies also the following strong version of (3.1):

Ve e B",Ju e U,3x € f(u),Vt € R, z(t) = p.

DEFINITION 82. The system f is possibly surjective (onto) if it satisfies

(3.1).
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DEFINITION 83. The system f is called necessarily surjective if it satisfies
either of (3.2),...,(3.4). If (3.2) is true, then f is necessarily surjective with
unbounded access time. If (3.3) is true, then f is necessarily surjective with
bounded access time. If (3.4) is fulfilled, then f is necessarily surjective with
fixed access time. In these three situations the access timet is called unbounded,
bounded and fixed.

EXAMPLE 85. The autonomous system f: S — S,
Vue S, f(u) =S

1s posstbly surjective, but not necessarily surjective.
EXAMPLE 86. Denote U = {X(_oo,0)s X[0,00)} and let f: U — P*(S) be defined
by
Vu € U, f(u) = {uo7?dc R}.
The system f is necessarily surjective with unbounded access time, but not with
bounded access time. We verify the property (3.2), for example, for p=0: Ju € U,
that is u = X(_co0) Such that f(u) = {X(_co,a)ld € R} and Yz € f(u), there is
teR, i.e. t > sup supp x with the property x(t) = 0.
ExamPLE 87. U = {0,1} (the two R — B constant functions) and f : U —
P*(S) is defined as
f(0) = {z]z € 5,2(0) = 0},
() ={zlx € 5,2(2) = 1}.
The system f is necessarily surjective with bounded access time, but not with fixed

access time. In order to verify that (3.3) is fulfilled, we choose, for any p € B, the
input w = p (the equality between the constant function and the constant) and

L[ 0ifu=0
) 2if p=1
EXAMPLE 88. We define f : S — P*(S) by
Vu € S, f(u) = {z|z € S,z(0) = u(0)}.

The system f is necessarily surjective with fixed access time, that is fort = 0 and for
any 1 € B we can choose some w € S such that uw(0) = p. ThenVz € f(u),z(0) = .
The property (3.4) is true.

THEOREM 218. If f is a deterministic system, then the properties of possible
surjectivity and necessary surjectivity with unbounded access time are equivalent.

THEOREM 219. Suppose that f is possibly surjective and that f C g, for some
system g : V — P*(S™), V € P*(S("™). Then g is possibly surjective.

ProOOF. We infer that if p € B"™ is arbitrary, then u € U exists, thus there
are w € V and x € f(u), thus there are x € g(u) and ¢t € R with the property
x(t) = p. O

THEOREM 220. Suppose that the system g is mecessarily surjective with un-
bounded (bounded, fixed) access time. Then from f C g and U =V, we infer that
f s necessarily surjective with unbounded (bounded, fixed) access time.

ProOOF. The properties of all states of g are, in particular, the properties of all
states of f. O
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THEOREM 221. If the system f is possibly surjective (necessarily surjective
with an unbounded, with a bounded, with a fixed access time) then f* has the same
surjectivity property.

PROOF. We show this implication for the statement (3.2) :
VueB", JueUVr € f(u),Ft e R,z(t) = p
VueB", Ju e U Vx € f(u),3t € R,ZT(t) =1 —
Y € B, Ju € U, Vx € f*(u),3t € R, z(t) = p.
(]

THEOREM 222. Consider the systems f : U — P*(S™), U e P*(S"™)) and

h:X — P*(S®), X € P*(S"™) with the property that the inclusion |J f(u) C X
uelU
holds true. If ho f is possibly surjective (necessarily surjective with an unbounded,

with a bounded, with a fized access time), then h is possibly surjective (necessarily
surjective with an unbounded, with a bounded, with a fived access time).

PRrROOF. Suppose that h o f is possibly surjective. Then
Vv e BP,JueU,3z€ (ho f)(u),3t € R, 2(t) =v.
Thus
Vv € BP,Ju e U,3x € f(u),3z € h(x),It € R, 2(t) = v,
VveBP, 3z € X,3z € h(z),Ft e R, 2(t) =v
and h is possibly surjective.
Suppose now that h o f is necessarily surjective with a bounded access time.
We have
VveBP,JuelU,3t e R,Vz € (ho f)(u),2(t) =v,
Vv e BP,Ju e U,3t € R,Vx € f(u),Vz € h(x), 2(t) = v,
Vve BP,3t e R,3z € X,Vz € h(x),2(t) =v
i.e. h is necessarily surjective with a bounded access time. O

THEOREM 223. If f satisfies |J f(u) = X and h is possibly surjective, then
uelU

the system h o f is possibly surjective. In particular, if f satisfies the property of
surjectivity from Definition 81 and h is possibly surjective, then h o f is possibly
surjective.

Proor. We have
Vv e BP, 3z € X,3z € h(z),3t € R, 2(t) = v,
Vv e BP,Ju e U,3x € f(u),Jz € h(x),Ft € R, 2(t) = v,
Vv eBP,JueU,3z€ (ho f)(u),It € R,2(t) =v.
The property from Definition 81 implies |J f(u) = X = 5™, O
uelU

THEOREM 224. Let f be a necessarily surjective system with an unbounded
(a bounded, a fized) access time and g an arbitrary system with U C V and Yu €
U, f(u)Ng(u) # 0. Then the system fNg is necessarily surjective with an unbounded
(a bounded, a fized) access time.

PROOF. The support of f N g is U. We apply Theorem 220. O
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THEOREM 225. If the system f is possibly surjective and g is an arbitrary
system, then f U g is possibly surjective. In particular, the union of the possibly
surjective systems is a possibly surjective system.

PrOOF. Because f C fUg, the statement of the theorem follows from Theorem
219. O

4. Controllability and accessibility, points of view

REMARK 76. The notion of controllability [20] of the linear differential equa-
tions was implicitly introduced in the works of optimal systems by L.S. Pontriagin
and his colleagues under the form of certain algebraic conditions. The notion has
become distinct due to the works of R.E. Kalman presented at the Conference of
Differential Equations of Mexico Clity in 1959 and the first Congress of Automatic
Control from Moscow in 1960.

At this moment, we reproduce some points of view on controllability and acces-
sibility. We mention that the authors to follow work with real deterministic systems
and their ideas must be adapted to the present context.

Professor Toma Leonida Dragomir arques® that ’controllability means the exis-
tence of a command that can bring the system in a bounded, arbitrary time interval’
from an arbitrary state in a steady state’. Accessibility means the existence of a
command that can bring the system from a steady state in an arbitrary state, there-
fore the access from the steady state to an arbitrary state, in a bounded, arbitrary
time interval also. For the majority of the linear systems the two properties are
equivalent, but there are linear systems for which they are not equivalent. In the
case of the non-linear systems, the problem is more difficult. Historically, first ap-
peared the concept of controllability, then the one of accessibility. Because of their
equivalence in the usual linear cases, they are frequently identified’.

Anouck Girard’s opinion on controllability* is that intuitively *you can get any-
where you want in a finite amount of time’. In this approach any requirement of
reaching a steady state is missing.

F.H. Clarke et al.® define the asymptotic controllability in a manner consis-
tent, except for the asymptotic requirement, with Dragomir and remark that their
definition is a ‘natural generalization to control systems of the concept of uniform
asymptotic stability of solutions of differential equations’.

In his "Kalman’s Controllability Rank Condition: from Linear to Nonlinear®,
Eduardo D. Sontag identifies the Dragomir’s controllability and accessibility by sta-
ting that ’In principle, one wishes to study controllability from the origin’. The
author considers the origin be a steady state, or, in his terminology, an ‘equilibrium
state’ and he quotes that there is another terminology for this concept of controlla-
bility, namely that of reachability. Furthermore, 'For controllability questions from
non-equilibria related results hold, except for some minor changes in definitions’,

1private mail

2this means that we do not refer to an asymptotic behavior here

3i.e. the final value of the state, the null vector in the linear case

4ME237-Control of Nonlinear Dynamic Systems, Discussion #3, Controllability and Observ-
ability of Nonlinear Systems, February 18-th, 2002

5F.H. Clarke, Yu.S. Ledyaev, E.D. Sontag, A.I. Subbotin, Asymptotic Controllability Implies
Feedback Stabilization, IEEE Transactions on Automatic Control, Vol. XX, No. Y, 1999

bto appear in Mathematical System Theory: The influence of R. E. Kalman
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i.e. he accepts the controllability in the sense of Girard, a simple transfer without
any initial or final equilibrium. Another remark in his work is that ’often one is
interested ... in controllability to zero’. By accessibility, after transposing the con-
cept for our present needs, Sontag means the same as his ‘controllability from the
origin’.

We present now the definitions given by Professor Mihail Megan [20] to the
two concepts, translated in the language of the asynchronous systems. Note that
in these definitions the author knows and makes use of the possibility of including
or not the steady state requirement. To be mentioned also that, sometimes, differ-
ent possibilities of translating his definitions in the asynchronous systems language
exist. Let be t' € R. The system f is:

a) exactly t’ controllable if for any i/, 1" € B™, we have that there are t” >t/
and u € U such that (all) the states x € f(u) reach ',y at t',t";

b) exactly t' stable controllable (originally: exactly t' null controllable)
if for any 1/ € B", there is some steady state "' € B"" as well as t" > t' and
w € U such that (all) the states x € f(u) reach p/',pu" at t’ and t';

¢) exactly t' controllable with universal time if at a) t” depends on t' only
and is independent of any of u', 1, u and x;

d) exactly t' stable controllable with universal time (originally: exactly
t' null controllable with universal time) if at b) t" depends on t' and is inde-
pendent of the other variables.

With such definitions Megan accepts, in fact, all the other points of view. The
word ’exact’ in this terminology is opposed to “approximate’, a variant that this au-
thor takes also in consideration. We do not insist in that direction because ‘exactly’
and “approximately’ coincide in our study. Moreover, f is:

e) exactly completely controllable if a) is true for any t';

f) exactly completely stable controllable (originally: exactly completely
null controllable) if b) is true for any t';

g) uniformly exactly controllable if at e)t” =t' + 6, 6 > 0 a constant;

h) uniformly exactly stable controllable (originally: uniformly exactly
null controllable) if at f) t" =t' + 6, § > 0 a constant.

We give now from the Professor Megan paper [20] the definitions of accessibility
as obtained after the translation in the terms of the asynchronous systems theory.
Let be t' € R. The system [ is:

a’) exactly t' accessible if Vi € B", there are some steady state pi/ € B"®,
the time instant t” > t' and the input u € U such that the values p', 1" are reached
by (all) the states x € f(u) at t' and respectively at t;

b’) exactly t' accessible with universal time if at a’) t” depends on t' only
and is independent of the rest;

¢’) exactly completely accessible if a’) is true for all t';

d’) uniformly exactly accessible if at ¢’) § > 0 exists such that t" =t + 6.

In the next sections we have used the word ‘accessibility’ for both of controlla-
bility and accessibility.

9

There it is not obvious if the translation should be 37 € B", p” steady state or Y’ € B", W’
steady state

8like before, there are two convenient translations here: Ju’ € B™, u/ steady state and
Vu' € B", i steady state
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5. Accessibility in the sense of having access

DEFINITION 84. Let be the system f and the number 6 > 0. Consider the
following statements

(5.1) Vue B, JueUVz € f(u),3t € R,z(t) =,
(5.2) Vue B",Juec UVr € f(u),3t € R,2)(—oct) = 1,
(5.3) Ve B", Juc UVr € f(u),3t € R, 2jj,00) = 1ty
(5.4) VYu e B",Ju e U Vz € f(u),Vto € R, 3t > to, z(t) = p,
(5.5) Ve B",Juc UVr € f(u),3t € R, 2146 = 1y
(5.6) VueB", JuelU,3t e R,Vx € f(u),x(t) = pu,
(5.7) VueB",Juc U3t c R, Vo € f(u), 2)(—0c,t) = My
(5.8) VueB", JucU,3t € R,Vr € f(u), 2|jt,00) = 1y
(5.9) Vu e B™, Ju e U, Vty € R, 3t > t9,Vx € f(u),z(t) = u,
(5.10) Vu e B", Jue U, 3t € R,Vx € f(u), 2|jt,146 = p-

a) (5.1) is called the property of accessibility. If Q2 = B™ or, equivalently, if
(5.1) is true, we say that f is accessible.

b) (5.2) is called the property of accessibility to the initial values of the
states. If ©f = B™ or, equivalently, if (5.2) is fulfilled, we say that f is accessible
in the sense of the access to the initial values of the states.

¢) (5.10) is the property of synchronous accessibility to the §—persistent
values of the states. If Qss = B™ or, equivalently, if (5.10) is satisfied, then
we say that f is accessible in the sense of the synchronous access to the
0—persistent values of the states.

REMARK 77. The statements (5.1),...,(5.10) are similar to (1.1),...,(1.10) from
Ch. 6 where 3p was replaced by Yy, i.e. instead of the existence of the access to
some value p, we have the access to any value p. The tmplications between the
previous properties are the same like those in Remark 60 i.e.
(5.6) <= (5.10) <= (5.7)
U I
— (55) <« (5.2
T
) < (5.3)
)
— (5.8)

U
(5.6) (5.10)

(5.1) and (5.6) coincide with the requirements of necessary surjectivity (3.2),

(3.3).
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(5.6),...,(5.10) may be strengthened themselves to ’fixed time’ properties, in
order to give new meanings to the concept of accessibility.

(5.1),...,(5.10) are interpreted as a generalization of the Dragomir’s point of
view that ‘controllability means the existence of a command that can bring the sys-
tem in a bounded arbitrary time interval from an arbitrary state in a steady state’
(see (5.8) and also (1.8) from Ch. 6) to all types of accessible values that we
have used: arbitrary, initial, final, recurrent and 6—persistent. The most general
of these properties, (5.1) and (5.6), match also the Girard’s demand that 'you can
get anywhere you want in a finite amount of time’.

6. The access of the non-anticipatory systems from a final state

THEOREM 226. Suppose that the system f is non-anticipatory in the sense of

Definition 64: ¥Vt € R,Yu € U,Yv € U,
U|(=00,t) = Vl(=00,) = {Z|(~00,ql2 € (W)} = {y(~0ogly € f(v)}

and we fix (', u”" € B", uw € U. The following statements are equivalent:

a)Vr € f(u),It € R,z(t') = ¢ and Ft" > ¢/, z(t") = u;

b) v e UVy € f(v),3t € Rou—oopr) = Vj(—oo,r)sY(t') = p' and Vo €
fw), 3" >t x{t") =pn".

PROOF. a) = b) It is sufficient to take u = v.

b) = a) We fix some v € U making b) true and we denote

t; = Sup{t’|t’ S Rau\(—oo,t’) = U\(—oo,t’)}'

If t; = oo, then w = v and a) is true. Thus we can suppose from this moment on
that 1 < oco. From uj(_se,t,) = V|(—co,t;) and from the non-anticipation of f, we
have

(6.1) {7 (—oo,)l® € f(W)} = {Y)(—o0,t)y € F(V)}.
On the other hand, taking into account (6.1), b) implies
Yy € f(v),3t" € R, uj(—oot) = Vj(—oo,r), Y(t') = 1 and
andVx € f(u), 3" >t/ x(t") = u”,
Vy € f(v), 3t <t1,y(t') =p andVz € f(u),It" >t z({t") = u",
Vo € f(u), 3t € R,z(t') =y’ andVz € f(u),3t" >/, x(t") = u”,
Vo € f(u),3t e Ryz(t') = p' and 3" > ', z(t") = p”.
O
REMARK 78. The access of the states of a system to a final value and then
from that final value to other values is important in the theory of the asynchronous

systems. A certain triviality occurs here, in the sense that the sets (see Definition
69 and Definition 72)

foQ={(, "), 1 eB",Juel,
Vo e f(u), 3t € R,z o0y = i and 3t" > ', x(t") = p"},
PO ={(, W)y, 1 €B",Juel,
Ve e f(u), 3t € R,z o) = 1 and 3" € R, o0y = '},
FOR={( 1) 1" €B",Juel,
Vo € f(u),3t" € R, x|y o) = 1/ and Vi1 € R, 3" > 1y, z(t") = p"'},
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0 @ Qs = {(/, 1)1, 1" € B", Jue U,
Vo € f(u), 3t € R, x| o0y = i and " >t — 8,z pris) = 1"}
6 >0, are all equal to (see Theorem 202 c))
{(//’7 N’)|N’ € Bn75|u € U7vx € f(u)75|t € R7x\[t,oo) = l/’}
while the set
@0y ={( 1), €B",Fuel,
Vo € f(u), 3t € R, x|y o0y = 1/ and I" >t/ 2 _ 4y = '}
is equal to (see Theorem 202 f))
{(u, )| € B", Ju € U,V € f(u),Vt € R,x(t) = p}.

In other words, from an accessible final value, the only accessible value is the final
value itself, with the special case when from an accessible point of equilibrium the
only accessible value is the point of equilibrium itself.

The previous theorem allows us reconsidering the consecutive accesses to '
and then to p” in the case of the non-anticipatory systems, i.e. it gives the idea
of replacing the expression from a) with the one from b), when ' is the final value
and p” is successively arbitrary value, initial value, final value, recurrent value and
O—persistent value. We have

DEFINITION 85. Consider the non-anticipatory system f in the sense of Defi-
nition 64. We call

P@Q={(, ") n" €B",JueUIvelVye f(v),It' €R,

Uj(—oo,t) = V|(—0,t')s Y|[t',00) = M and ¥z € f(u), 3" >t' (") = p"}
the set of the couples (1, 1) of consecutive accessible values of (the states
of) f, with i final. For (i, ") € ©; ®Q we say that there is u € U such that the
states x € f(u) take (access, reach) first the final value ', then the value
.

Let us fix p', 1, u. The property
JveUVye f(v),3It €R,

Uj(—o0,t) = V|(—o0,t')s Y|[t,00) = W and Yz € f(u),3t" >t x(t") = p
is called the consecutive accesses of the states of f, under the input u, first
to the final value 1/, then to p”. Sometimes we say that f(u) transfers the

final value i/ to p”.
The terminology and the notations are similar for the sets

P ® 0, ={(W, 1), p" € B, 3uec U IveUVye f(v),3t' €R,

"

Uj(—o0,t) = V|(—o0,t)s Y[t/ 00) = M and ¥z € f(u),3t" >t 21—y = 1"},
Y@ ={(W,u) " €B,JuelUIvelUVye fv),3t' €R,
U|(—oco,t’) = V|(—co,t’)s Y|[t/ ,00) = /L/ and Vx € f(u),EIt” S val[t”,oo) = p,”},
Y®R={(, ")y, p" € B",FucU,FvelUVyc f(v),3t' €R,
Uj(—o00,tr) = V|(—o0,t')s Y|[t",00) = M1 and Y € f(u),Yt, € R, " > t1,2(t") = "},
O @ Qs ={(/, 1)1, 1" € B",JuecUIvelVye f(v),Ht €R,
U|(—0,t') = V|(—o0,t')s Y|[t'00) = M and Y € f(u),3t" >t = 6,2 prys) = 1}
where § > 0.
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REMARK 79. There are versions of Definition 85 when one or both accesses are
synchronous. We shall make use of this remark further.

In the previous constructions p' is not a final value under u, but under v, where
w and v may differ. In other words, if u # v, then there is some time instant t'
with the property that U|(—o0,t') = V)(—o0,t’)s {x|(foo,t’]|x € f(u)} = {y|(foo,t’]|y €
J)}, Yy € f(v), Y ,00) = 1, u(t’) # v(t') and there is the possibility that 3t" >
t',3x € f(u),x(t") # p'. In particular, there is the possibility that Vz € f(u),3t" >
t',x(t") = p" with " # W'. In such circumstances, ©;®Q, 0, ®0", 0/ @R, O &5
avoid the previously mentioned triviality and @’f ® Of remains trivial’. Reaching
this conclusion represented the purpose of the present section.

7. Accessibility in the sense of the consecutive accesses

REMARK 80. Let be the system f and at this moment we try to gather the
previous intuition on what controllability and accessibility are. The first idea to
start with is the Girard’s point of view on controllability 'you can get anywhere you
want (in a finite amount of time)’, that in two non-synchronous variants is

(7.1) I € BV € B",Ju e U,

Vo e f(u),3t e Ryz(t') = ' and 3" > ', z(t") = p”
and
(7:2) Vu' € B", V" € B",3u e U,

Ve e f(u),3t e Ryz(t') = ' and 3" > ', x(t") = p”

(7.2) generates the definitions a), c), e), g) of controllability of Megan from Remark
76:

W eR,VY eB", V' €eB",Juec U3 >t
Vo € f(u),z(t') = p and x(t") = ",
W eR, I >t',Vu e B",Vu" € B",Ju e U,
Vz € f(u),z(t') = p' and (") =
vt e R,Vu' € B, Wy € B", Ju e U, 3" > t',
V€ f(u),z(t') = p and x(t") = "
36 >0,V e R,V € B, Vu'" € B*,Ju c U,
Vz € f(u),z(t') = p/ and z(t' +8) = p”.
The Dragomir’s point of view on controllability ’the existence of a command that

can bring the system in a bounded arbitrary time interval from an arbitrary state
in a steady state’ means one of

(7.3) V' e B", 3" € ©,,Ju e U,

Ve e f(u), 3t e R,x(t') = i’ and 3t" > t', 20 o) = pi”,
(7.4) V' e BV € 0, ucl,

Ve e f(u), 3t e R,x(t') = i’ and 3t" > t', 20 o) = p”.

The set of the ’steady states’ @'f s supposed to be non-empty and the two versions
of the definition are not synchronous again. The philosophy with (7.3) and (7.4)

90/, ® ©) = 0/, ® 0 = {(1, )| € B™, Ju € U,Vx € f(u),Vt € R, x(t) =}
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generates the definitions b), d), f), h) of controllability of Megan [20] (see Remark
76 again):
W eR,VY eB", " €O, IuecU ' >+,
Ve e f(u),z(t') = 1’ and zpr o) = 1"
W eR,VY e B, Vu" € O, Iuec U >,
Ve e f(u),z(t') = i’ and zpr o) = 1"
W eR,IH" >t,Vu e B, I €0, JuecU,
Vo e f(u),z(t') = i’ and zpr o) = 1"
W eR,IH" >t ,Vu e B", V' €0, JuecU,
Ve e f(u),z(t') = i’ and zpr o) = 1"
v e R,V € B", 3" € O, Ju e U, 3" >t
Vo e f(u),z(t') = 1’ and zypr o) = 1"
vt e R,V €e B",Vu' € O, Jue U3t >t
Ve e f(u),z(t') = i’ and zpr o) = 1"
36 >0,V e R,V € B", 3/ € O, Ju e U,
Vo e f(u),z(t') = 1’ and z)p4s,.00) = 1"
36 >0,V e R,V € B", V' € O, Ju e U,
Vo e f(u),z(t') = 1’ and z)pys,.00) = 1.
The definition that Dragomir gives to accessibility is good for non-anticipatory sys-
tems in the sense of Definition 64 only: ’the existence of a command that can bring

the system from a steady state in an arbitrary state, thus the access from the steady
state to an arbitrary state in a bounded arbitrary time interval’. This means the

truth of one of:

(7.5) ' €@,V € B, 3uclUIvelVyc f(v),3t' €R,
Uj(—o0,t) = V|(—00,t), Y|t/ 00) = H and Vx € f(u),3t" > t',x(t") = p”,
(7.6) V' € O,V € B",Ju e U,Fv e UVy € f(v),It € R,

Uj(—o0,t) = V|(—oo,t')> Y|[t,00) = M and Yz € f(u),3t" >t x(t") = p".
Here are Professor Megan’s definitions of accessibility a’), b’), ¢’), d’) from Remark
76, that have their origin in the idea expressed by (7.5):
W eR,Vu' €eB", 3y €0, FJuclU, el >,
Yy € f(V), U)(—o0,tr) = Vj(—o0,t')s Y|[t',00) = 1 and ¥ € f(u),z(t") = p";
W eR, I >tV eB", I €0}, JuclU,vel,
Yy € f(V), U)(—o0,tr) = Vj(—o0,t')s Y|[t',00) = 1 and ¥ € f(u),z(t") = p";
v eR, V' €eB", 3 €0, JucU el It >¢,
Yy € f(V), U)(—o0,t) = Vj(—o0,t')s Y|[t',00) = 1 and ¥ € f(u),z(t") = p";
3 >0,v e R, VY €eB", 3 €0}, FJucU,wel,
Yy € F(V), U)(—o0,t) = Vj(—o0,t')s Y|[t!,00) = M and YV € f(u),z(t' 4 6) = p”

and, similarly, for the definitions a’), b’), ¢’), d’), having their origin in (7.6).
Now the way of constructing accessibility properties is obvious.



CHAPTER 8
Stability

The absolutely stable systems f are those systems for which Yu € U,V € f(u),

there is the limit tlim z(t) while the relatively stable systems are defined by Yu € U,
—00
if there is tlim u(t), then Vx € f(u), there is tlim x(t). These properties are asso-
—00 —00
ciated with another type of expectations from the behavior of the asynchronous
circuits. The stability relative to a Boolean function F' generalizes the relative
stability by replacing Eltlim u(t) by Ethm F(u(t)) and it defines the combinational
—00 —00

systems. The importance of these properties consists in the possibility of character-
izing f in discrete time. Indeed, the time instants ¢t > ¢, when all , respectively u
and all x, respectively F'(u) and all 2 have become stable may be chosen as discrete
time instants.

In this chapter these three types of stability are defined and commented. Ex-
amples are also given.

1. Absolute stability

REMARK 81. First we summarize some previously presented facts, related to
the absolute stability.

Let be the system f : U — P*(S™),U € P*(S"™). The system f is called
absolutely stable and we say that it has final (values of the) states if

(1.1) Vue UV € f(u),Ip € B", 3ty e RVE > ty,2(t) = p
is true. If

(1.2) Vue U, 3p e B" Vo € f(u),3ty € RVt > ty,2(t) = p,
then it is called absolutely race-free stable and if

(1.3) JueB",VueUVz € f(u),3ty e R,VE> ty,x(t) =p

then f is called absolutely constantly stable. In these definitions ty, v are called
the final time (instant) and respectively the final (value of the) state. In (1.2)
the final state p is called race-free and in (1.3) it is called constant. These notions
occur in Definitions 25,...,27 stated in the more general case of the pseudo-systems
while the unbounded, bounded and fixed final time instants occur in Definitions
31,...,33. The possibilities of combining different types of final states and final time
instants are listed in Theorem 26.

The notion of final value of a binary valued function is introduced together with
its dual, the initial value by Definition 14. The notations for the final value of x
are tli)rgoac(t) and x(oo — 0). The final state function ¢, that associates with each

input u the set {x(co — 0)|z € f(u)} occurs in Definition 35, together with the set
of the final states Oy.
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The concept of the system introduces an asymmetry between the existence of
the initial states and the existence of the final states. This is mainly due to the fact
that we use to reason in a non-anticipatory manner, from the past to the future
and, in general, we must assume the existence of the initial states. The way that
the pseudo-systems induce, in the case of the systems, the properties of existence
of the initial/final states respectively the initial/final time instants was shown in
Theorems 31 and 32.

The absolutely stable systems are those where the stabilization of the state is
produced independently of the fact that the input stabilizes or not, the following
implications

(1.3) = (1.2) = (1.1)

being true. The absolutely stable systems f have the final state function ¢y : U —
P*(B™) defined. In the case of absolute race-free stability, ¢ U — B" is a
uni-valued function and if f is absolutely constantly stable, then ¢; is the constant
uni-valued function. We can identify the binary vector p € B™ by the constant
vector function x(t) = p, allowing us to define for the absolutely stable system f
the system lim f : U — P*(S™) by Yu € U,lim f(u) = {x(cc — 0)|z € f(u)}. If
f is absolutely race-free stable, then lim f is deterministic while for f absolutely
constantly stable, lim f is deterministic and autonomous.

We introduce the dual of f,, the restriction of the absolutely stable system f to
the initial (value of the) state u (Example 20"). For an arbitrary final state i € O
of f, the system f*:U* — P*(S™) is defined by

UF = {ulu € Up € 6(u)}.
Vu € U, fH(u) = {z|z € f(u),z(co —0) = u}.
The system f* is a subsystem of f called the restriction of f at the final (value
of the) state p.

Here are some properties.

If g has final states (race-free final states, a constant final state), then any
f C g has final states (race-free final states, a constant final state) (Theorem 36).
If g has final states and f C g, we have Vu € U, ¢¢(u) C v¢(u) (Theorem 40). If
g has a bounded final time (a fized final time), then any f C g has a bounded final
time (a fized final time) (Theorem 38).

The system [ has final states (race-free final states, a constant final state) iff
f* has final states (race-free final states, a constant final state) (Theorem 44) and
f has a bounded final time (a fized final time) if f* has a bounded final time (a
fized final time) (Theorem 46). Theorem 48 shows that the absolute stability of f
implies Yu € U*, ¢%(u) = {Ti|pn € ¢¢()}.

The systems f and f' have final states (race-free final states, constant final
states) if f x f' has final states (race-free final states, a constant final state) (The-
orem 58). The systems f and f' have a bounded final time (fized final time) iff
fx f" has a bounded final time (a fized final time) (Theorem 60). If f, f’ have final
states, we have Vu x u' € U X U', (¢ x ¢')p(uxu') = ¢;(u) x ¢'s(u) (Theorem 62).

Here we give without proofs some properties similar to the previous ones relative
to the parallel connection (f, f1), that were not mentioned before. Suppose that

LA more appropriate construction of this dual should start from the pseudo-system fi that
in general has no initial values of the states, but has final values of the states; then take some
final value p € © etc. The expression ’dual of f,,” has a certain imprecission.
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Unu; # 0. If f, f1 have final states (race-free final states, constant final states) then
(f, /1) has final states (race-free final states, a constant final state). If f and f] have
a bounded final time (a fized final time), then (f, f1) has a bounded final time (a fized
final time). On the other hand, we have Yu € UNUY, (¢, ¢))p(u) = ¢5(u) x ¢} (u).

We continue listing the previously mentioned properties of stability. If h has
final states (a constant final state) and the system ho f is defined, then ho f has
final states (a constant final state) (Theorem 69). If h has a fized final time and
ho f exists, then ho f has a fizred final time (Theorem 71). Let be the systems f

and h with |J f(v) C X fulfilled. Suppose that h has final states and we use the
uelU
notations 1,6y for the final state functions of h,ho f. The following formula from

Theorem 73

Vue U, b¢(u) = U n¢(z)

wef(u)
is true. If f has final states (race-free final states, a constant final state) and
fNg exists, then fNg has final states (race-free final states, a constant final state)
(Theorem 82). If f has a bounded final time (a fixed final time) and f N g exists,
then f N g has a bounded final time (a fixed final time) (Theorem 84). If f,g have
final states and W = {ulu € UNV, f(u)Ng(u) # 0} is non-empty, then by Theorem
86, we have

Vu e W, (¢ N7y)p(u) = ¢p(u) Nyp(u).
If f, g have final states, then fUg has final states also; if f, g have race-free final

states and Yu € U NV, f(u) N g(u) # 0, then f U g has race-free final states. If f, g
have constant final states and |J f(u) N U g(u) # 0, then, by Theorem 95, fUg
eV

uelU u
has a constant final state. If f,g have a bounded final time (a fized final time),
then f U g has a bounded final time (a fized final time) (Theorem 97). Suppose
that f,g have final states. By Theorem 99, we have that the final state function
(pUv)f: UUV — P*(B") satisfies

¢p(u), ue U\V

VuGUUV,(qSU’y)f(u){ Yi(u), ue VAU
Gp(u)Uyp(u), ueUNV

The constant final state function given by the existence of k € {1,...,2"} and of
pts o, i € B such that Yu € U, ¢¢(u) = {u, ..., u*} is to be treated by duality
with the constant initial state function from Section 1 of Ch. 5. The meaning of
Jp € B",Vu € U, ¢y (u) = u is that of absolute constant stability.

Let be the autonomous system f = X. The dual of Theorem 113 states that the
property of existence of the final state is given by

Ve e X,3p e B", 3ty e RVt > ty,2(t) = p,

while the existence of the race-free final states coincides with the existence of the
constant final state and is given by

JueB" Ve e X,3ty € RVt > ty,x(t) = p.

The dual of Theorem 11/ states that for the autonomous system f = X the existence
of the bounded final time and of the fixed final time coincide both with

JdtreR Ve e X,3pe BVt >t x(t) = p.
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The dual of Theorem 115 states that for the absolutely stable autonomous system
f = X the following possibilities exist: f has final states and an unbounded final
time

Ve e X,3p e B", 3ty e RVt >ty a(t) = p;
f has final states and a bounded final time

dty e R,Ve € X,3p e B",Vt >ty x(t) =
f has race-free final states and an unbounded final time

JueB", Vo e X,3ty € RVt > ty,2(t) = i
and f has race-free final states and a bounded final time

JueB", 3ty e R, Ve € X,Vt >ty x(t) =p

respectively. The dual of Theorem 116 states that the final state function of the
absolutely stable autonomous system f is constant and equal to the set of the final
states.

If a deterministic system is absolutely stable, then it is absolutely race-free
stable. If f is an absolutely stable finite system, then it has a bounded final time,
the dual of Theorem 124. In particular, the absolutely stable ideal combinational
systems are absolutely race-free stable and have a bounded final time.

If f is absolutely stable and self-dual, then the final state function satisfies
by = ¢}, the dual of Theorem 145.

Let f be absolutely stable and symmetrical. Then the final state function fulfills

VueU, d)f(u) = ¢f(u0')

for any bijection o € S({1,...,m}), as follows from the dual of Theorem 153.
If the absolutely stable system f is time invariant, then, from the dual of The-
orem 161, we get that its final state function fulfills

Vd € R,\Vu € U, ¢(uot?) = dp(u).

2. Relative stability
DEFINITION 86. a) A system f for which the property
Yu e UNSM™ Vo e f(u),3u e B, 3ty € RVt > tr,a(t) = p

is satisfied is called relatively stable.
b) If the property

Yue UNS™, 3ue B Ve e fu),3t; € RVE>tr,x(t) = p

is true, then f is called relatively race-free stable.
c) The system f is relatively constantly stable if

Ju e B, Yu e UNS™ Ve f(u),3t; € RVt >ty x(t) = pu.

IFUNS™ =0, then we say that the previous stability properties are trivially
fulfilled and if U N SS™ £ 0, that they are non-trivially fulfilled.
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REMARK 82. The relatively stable systems are those systems for which the
stabilization of the input produces the stabilization of the state: Yu € U Vx € f(u),

Jlim u(t) = Eltlim x(t),

t—oo
while if tlim u(t) does not exist, 1tlim x(t) may exist or not.
— 00 —00
Relative stability is analyzed similarly with the absolute stability.

3. Stability relative to a function. Combinational systems
NOTATION 23. Let be the Boolean function F' : B™ — B™. Denote
Se) = {ulu e 8™, F(u) € S™M}.

DEFINITION 87. a) A system f satisfying

YueUnN S}?,Vm € f(u),3p € B", 3ty e RVt > ty,2(t) = p

is called F—relatively stable, or stable relative to the function F'.

b) If the following property

Yue UNSY Vo e f(u), 3ty € RVE> ty,a(t) = Jim P(u(€)

holds true, then f is called F—relatively race-free stable, or race-free stable
relative to the function F. Another terminology for f is that of combinational
system and in this terminology F' is called the generator function of f.

¢) The system f is F—relatively constantly stable if it is F—relatively race-
free stable and the function F : U — S is constant, F = p:

JueB",VueUVz € f(u),3ty € RVt >ty x(t) = p.

Ifun Sg? = (), the previous stability properties are trivial while if U N SI(;WZ) # 0,
they are non-trivial. 7

REMARK 83. The notions of F—relative constant stability and respectively of
absolute constant stability coincide. On the other hand, if F : B™ — B™ is the
constant function, then ng? = S and in Definition 87:

a) coincides with the absolute stability;

b) coincides with ¢) (and with absolute constant stability).

The F-relative race-free stability is a property of stability of ‘race-free’ type.
Indeed,

Yu e UNSEY, 3ue B, Vo € f(u),3t; € RV > ty,a(t) = p,
where p = Elim F(u(§)). For example, the ideal combinational systems Fy are race-

free stable relative to F.

The analysis of this type of stability is similar to the one that was made at the
absolute stability.

In Figure 1 we give the existing connection between the nine types of previously
defined stability.

At this moment the three types of final time ty: unbounded, bounded and fized

Yu € U Nz € f(u)NS™,3t; € R,V >ty x(t) = (t);
Vu € U, 3ty € R,z € f(u) NS Wt >ty x(t) = a(ts);
3ty e R,Vu e UV € f(u) NS,V > tg,a(t) = x(ty)
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abs const stab = absrace - freesinh =  abs stab
|l U
F —pel const stab = F —rel rdte — free stah = F —ral stab

U U U

rel const stab = rel race — free stab = rel stab

FIGURE 1. The connection between several types of stability
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F1GURE 2. Combinational system

may be combined with the nine (non-distinct) types of stability. It follows 27 (non-
distinct) possibilities, like in Theorem 26 that characterizes the pseudo-systems.

EXAMPLE 89. Let be the circuit from Figure 2, where u,v,z,y € S. The systems
u and v are combinational, in the sense that they can be identified with the ideal
combinational system I. Then the Cartesian product uw X v is an ideal combinational
system, representing the level 1 of analysis of the circuit.

At level 2 we have, on one hand, the parallel connection (v,v) that is an ideal
combinational system and, on the other hand, the Cartesian product ux (v,v) that is
an ideal combinational system too. Its generator function is (A1, A2) — (A1, A2, A2).

At the third level of analysis of the circuit we have the logical product Boolean
function (A1, A2) — A1 - A2 and the corresponding combinational system, that is in
the Cartesian product with v. The generator function is (A1, Az, Az) — (A1 - Ao, Az).

At level 4 we have a combinational system with the logical product generator
function.

We conclude that the system f : S — P*(S) that models the circuit from
Figure 2 is combinational, as following from serial connections, parallel connec-
tions and Cartesian products of combinational systems. Its generator function is
()\1,)\2) [d )\1 . AQ.

4. The absolute stability of the non-anticipatory systems

THEOREM 227. Suppose that the absolutely stable system f satisfies the non-
anticipation property from Definition 64: ¥Vt € R, Yu € U, Yv € U,

Uj(—o0,t) = V|(—o0,t) == 18|(—o0,| € f(U)} = {W)(—00 |y € f(v)}
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and that it has also the fized final time ty. Then Vt € R, Vu € U, Vv € U,
()(~00,1) = V|(~o0,1) and t > t7) = f(u) = f(v),
i.e. f(u) depends on the restriction uj(_oc,,) only.
PRrOOF. Let t; € R, u € U, v € U be arbitrary such that
Uj(—oo,t1) = V|(—oo,t1) and t; > ty
be true. The non-anticipation of f gives
{x\(—oo,tl]|$ € flu)}= {y\(—oo,tl]|y € f(v)}.
From the absolute stability with a fixed final time of f (see Theorem 26, c)) we get
Vo e f(u),3p € B",Vt > ty,x(t) = p,
Yy e f(v), 3 € BVt > ty,y(t) =/
and, as t; > ty, we conclude that p =y and f(u) = f(v). O
THEOREM 228. Let f be non-anticipatory in the sense of Definition 64.

a) If f is absolutely stable and has the fized final time ty, then its final state
function ¢ satisfies Vi € R, Vu € U, Vv € U,

(U)(—00,t) = V)(—oo,ty aNd t > ty) == ¢ r(u) = ¢4 (v),

i.e. ¢¢(u) depends on the restriction uj(_ooi,) 0nly.
b) In the case that f is absolutely race-free stable and has the fized final time
ty, we have Vit € R, Vu € U, Yv € U,

(U)(—o0,t) = V|(—oo) and t > ty) = Vo € f(u),Vy € f(v),tli)rgox(t) = tli)m y(t),

oo
i.e. the limit tlim x(t), that is the same for all x € f(u), depends on u|(—oc ;) ONlY.

¢) If f is absolutely constantly stable, then
Yu e U Yo € U Vx € f(u),Vy € f(v),tlim x(t) = tlim y(t).

In other words, tlim x(t) is the same for allw € U and all x € f(u).

PROOF. a) From the previous theorem we have that f(u) = f(v). Thus

¢(u) = {z(o0 = 0)z € f(w)} = {y(oo = 0)ly € f(v)} = &4 (v).
b) This is the special case of a) when ¢ is uni-valued.
c) Special case of b) when ¢ is the constant function. 0

5. Examples

ExXAMPLE 90. We consider the following systems:
fi: S—=8YuesS, fi(u) =

fo: 8 = S Vuelb, fa(u) =u(0);

f3:85 =8, VueS, f3(u) =1;
fa:8 = P*(S),Vu € S, fa(u

()
f5:8 — P*(9),Yu e S, fs5(u)
(u)

0,1};
{u,a},u € S,

{ wudgS,
{

u,u € S,

fo: S — P*(9),Yues, fo(u) = {0,1},u ¢ S, ;
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lLue S,
f7:5_>5,vu65,f7(u):{ ()Ze,ZS ;

fsz%s,wes,fs(u):{ LueSe :
X[0,1)u]

[0,1) 2,3)U[4,5)U..,7U ¢ Sc
* . lL,ue S, _
fo:8—P (S),VueS,fg(u){ 01 mgs,
* wordld > 0},u€ S,
fio+ § = P*(5),Yu € 5, fio(u) = { (|)7U7¢gc

In Table 1 we have described the behavior of these systems relative to the in-

troduced notions of stability and relative to the final time by writing an "X’ when
the appropriate property is fulfilled. The function F from the table is the identity:
F:B—B,V\eB, F(\) =\, for which Sp. = S..

fi fo fs fo fs fe fr fs fo fio
absolute stability X X X X X X X
absolute race — free stability X X X X
absolute constant stability X
relative stability X X X X X X X X x X
relative race — free stability x X X X X X x X
relative constant stability X X X X
F — relative stability X X X X X X X X x X
F — relative
race — free stability % % %
unbounded final time X X X X X X X X X X
bounded final time X X X X X X X X X
fized final time X X X X X X

Table 1.



CHAPTER 9

The fundamental mode

Let be the asynchronous system f : U — P*(S™), U € P*(S'™). The funda-
mental (operating) mode of f is an input u € U with the property that there is a
sequence (u¥)ren € {0,1}" such that all x € f(u) access synchronously the values
w10, pt, 42, ... in this order, where p© is the initial value and u', 42, ... are final values.
If an asynchronous non-deterministic system f possesses fundamental modes, then
it is interpreted to be synchronous (i.e. discrete time) and deterministic.

After introducing and studying the fundamental transfer, the fundamental
mode is defined by means of this transfer. Several important properties of the
fundamental modes are analyzed, including accessibility. The chapter ends with
the investigation of the fundamental mode relative to a function.

1. Introduction

REMARK 84. The concept of fundamental mode is mentioned in many papers
under a non-formalized manner. First we quote [14], where its characterization is:
inputs are constrained to change only when all the delay elements are stable (i.e.
they have the input value equal to the output value)’. ’Note that the fundamental
mode excludes’ the existence of 'a cycle of oscillations’, that is instability. Flsewhere
the author of [14] refers to the fundamental mode where 'the designer has to make
sure that the circuit inputs can change only when the circuit itself is stable and ready
to accept them’. Thus the fundamental mode is an input satisfying a succession of
requirements of stability.

A more restrictive opinion on our topic is expressed in [28] as: ’the circuit
is assumed to be in a state’ (i.e. in a situation) ‘where all input signals, internal
signals and output signals are stable'. In such a state’ (i.e. in such a situation) 'the
environment is allowed to change one-input signals’. (The term ’environment’ is
used by some authors to express the idea of ‘everything but the circuit’, in particular
the human being that controls, perhaps, the input and observes the output. We
stress on the fact that the difference between this concept of fundamental mode and
the previous one has just occurred, the allowed change of ‘one-input signals’ only,
i.e. of one coordinate function u;,j € {1,...,m}.) We quote further from [28]:
"After that, the environment is not allowed to change the input signals again until
the entire circuit has stabilized’. The authors of [28] show that ’the environment’
should know when the stabilization of the circuit-system took place in order to keep
the input constant long enough and the name of David Huffman is indicated that
has pioneered the fundamental mode in his works from the 50’s.

n our context, the ’internal signals’ are the states and they coincide with the ’output signals’.
The statement means the existence of uw € U, € B™, u € B™ and t1 so that u(t1) = A\, z(t1) = p
and Vig > t1, u|[¢; 4,) = A implies Va € f(u), @4, 1,) = -

139



140 9. THE FUNDAMENTAL MODE

Now the two editors of [28] show how the fundamental mode of L. Lavagno
is reached under the new name of ’burst mode’. ’Later work has generalized the
fundamental mode approach by allowing a restricted form of multiple-input and
multiple-ouput changes’ (our question: did it happen that so far all x € f(u) have
switched one coordinate x;,i € {1,...,n} at a time?) 'This approach is called burst
mode. When in a stable state, a burst mode circuit will wait for a set of input signals
to change (in arbitrary order). After such an input burst has completed the machine
computes a burst of output signals and new values of the internal variables’ (in our
theory these two coincide). 'The environment is not allowed to produce a new input
burst until the circuit has completely reacted to the previous burst - fundamental
mode is assumed, but only between bursts of input changes’.

The notion of ‘burst mode’ is itself a subject of controversies in literature.
Therefore it is not an obvious substitute for the Lavagno’s ‘fundamental mode’,
with which it is identified by Sparso and Furber. Because at this moment the debate
gets funny flavors, we reproduce the point of view from Webopedia, 'the #1 online
encyclopedia dedicated to computer technology’. After quoting several techniques for
implementing burst modes, the authors conclude: "The one characteristic that all
burst modes have in common is that they are temporary and unsustainable. They
allow faster data transfer rates than normal, but only for a limited period of time
and only under special conditions’.

We adopt the terminology of fundamental mode for an input u characterized by
the fact that the states x € f(u) access synchronously an initial value u° € B" and
some family (u*)r>1 € B™ of final values, where the sequence (u*)ren does not
depend on x. This makes the fundamental mode of Lavagno and the burst mode of
Sparso and Furber be a special case of our fundamental mode (see Section 8 in this
chapter).

It is easily seen that the just given intuition situated behind the fundamental
mode supposes the existence of the non-anticipation. By the non-anticipation of
f:U — P*(8™), U € P*(S"™) in the present chapter we understand the property
from Definition 64: ¥t € R, Yu € U, Yv € U,

Uj(—o0,t) = V|(=o0,t) == 1T)(=00,] [T € f(u)} = {Y)(—oo,yly € f(v)}
if no other mentions are made. The only case when this property of non-anticipation
will be replaced by another one is in Section 10, where we explicitly say that we

ask for mom-anticipation relative to a Boolean function F : B™ — B™ thus no
misunderstanding is possible.

2. Fundamental and hazard-free transfers

THEOREM 229. Let be the non-anticipatory system f and fixr to € R,u € U,
€ B™. The synchronous access of f, under u, to u, at ty, defined by

(21) Vx € f(u)7 J}(to) = My
is equivalent to the following property
(2.2) Jv e U, U|(—oo0,t0) = V|(—oo,to) Vy € f(v),y(to) = p.
PROOF. (2.1)=(2.2) is obvious, with v = u.
(2.2)=(2.1). From u|( sorty) = V)(—oo,te) and the non-anticipation of f we

infer that {z|(_ooe)lz € f(u)} = {y|( so,to] [y € f(v)}. In particular, we have
{z(to)x € f(w)} = {y(to)ly € f(v)} = p,
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i.e. (2.1) holds true. O

REMARK 85. When f is non-anticipatory, we propose ourselves to extend the
result of Theorem 229 (by following an idea that has occurred for the first time in
Theorem 226 and Definition 85) to the possible equivalencies of the synchronous
initial access and the synchronous final access of f to u, defined by

(2.3) Vo € f(u), T)(—co,ty) = Hs

(2.4) Vo € f(u), o|[y,00) = M

and

(2.5) Fv € U, Uj(—c0,t0) = V|(—o00,t0)s VY € F(V),Y)(—o0,te) = Hs
(2.6) Fv € U, Uj(—o0,t0) = V|(—o0,te)s VY € F(V), Y|[te,00) = I

respectively. We note that

- (2.83)=(2.5) is true,

- (2.4)<=(2.6) is not true. While (2.4) shows that all x € f(u), starting with
the time instant to, become equal to i, (2.6) states that allx € f(u) satisfy x(to) = u
and, fort > tg, they may keep the value p, if, for example, u = v.

Fix tg < t1,u € U and p, ' € B™ and apply the previous remarks for the two
types of synchronous consecutive accesses of further interest. Namely, the one when
1 18 the initial value and p' is the final value

(27) Ve € F(), 2oty = 1t and Ty, o) = 1

and the one when u, ' are both final values

(2.8) Vo € f(u), T|g,00) = 1 and T, o0y = p/

respectively. Let us replace in (2.7) and (2.8) the synchronous accesses of x to
the final values by (2.6). After some computations that take into account the non-
anticipation of f, we get the properties

(29) e U, Uj(—o0,ty) = U|(—oo,t1)7vy € f(v)7y|(7007t0) = pand Yiitr,00) = s

(2.10) Fv € U, Uj(—oo,tg) = V|(=o0,te)s YU € F(V),Y|[to,00) = 1 and

and 3" € U, u)(—co.ty) = V|(—ooty) VY € F(V'),Y{jty,00) = I
Each of the non-equivalent statements (2.7) and (2.9) describe the accesses of f,
first to the initial value u, then to the final value p', with the difference that in the
first case all x € f(u) stabilize at y', while in the second case all x € f(u) may
stabilize at 1, for example if u = v.

The non-equivalent statements (2.8) and (2.10) give two completely different
ways to access synchronously first the final value u, then the final value p’, in the
sense that in (2.8) we have necessarily the triviality p = ' while in (2.10) p # 1/
is possible.

In the previous properties there is the possibility p = ' = point of equilibrium

(2.11) Ve e f(u),z = u,

with the trivialities that follow from this situation.
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DEFINITION 88. Presume that (2.9) is true and denote
(2.12) po S = (s |7 € f(u)}-
Then u g w' is called the initial fundamental transfer of (the states
of) f, under u, from the initial value p to the final value 1.
Conwversely, stating the fact that p Mg w', defined by (2.12), is an initial
fundamental transfer means the existence of to < t1 such that (2.9) is satisfied.
DEFINITION 89. If (2.10) is true, denote

(2.13) O = {07 € f(w)}-
Uilto,t1)

Then =" ' is called non-initial fundamental transfer of (the states
of) f, under the input u, from the final value p to the final value '
Conversely, stating the fact that p Httog) W, defined by (2.13), is a non-initial
fundamental transfer means the fulfillment of (2.10).
DEFINITION 90. If (2.11) is fulfilled, denote

(2.14) (u = p) = {n}.
Let p be a point of equilibrium. Then p = 1 is called the trivial fundamental
transfer of (the states of) f, under the input u.

Conversely, when we say that p = p, defined by (2.14), is a trivial fundamental
transfer, this means the truth of (2.11).

DEFINITION 91. If the synchronous transfer I satisfies Vy € T, v is coordinately
monotonous, then it is called hazard-free.

REMARK 86. In (2.9), in many situations, the synchronism of the access of the
states to the initial value 1 is not necessary. It was asked for the sake of symmetry
of the exposure only.

For the hazard-free transfers, the condition of monotony seems one of economy
and normalization, the coordinates of x do not switch more than necessary, but it
has rather a functional meaning.

The trivial fundamental transfers are hazard-free.

3. Properties of the fundamental transfers. Example

THEOREM 230. Let be the non-anticipatory system f and we fix tg,t1 € R,tg <

ti,u € Uyp, i/ € B™. If (2.7) is true, then p gt w' s an initial fundamental
transfer, while if

v € U, Uj(—co,t0) = V|(=ocosto)s VY € [ (V) Yllto,00) = 1t and Y € f(u), @), o) = 1

u
then oo i is a non-initial fundamental transfer.

PROOF. The first hypothesis makes (2.9) true for v = u, while the second
statement makes (2.10) true for v/ = w. O

THEOREM 231. Let f be non-anticipatory and o ' be a fundamental trans-
fer, where I C R is an interval of the form (—oo,t1) or [to,t1).
a) If I = (—o0,t1) and u' € U is arbitrary with uj—o ) = ui(_oo )7 then

u/
I H w' is an initial fundamental transfer equal to ik w.
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b) If I = [to,t1), then Yu' € U, uj(—oot,) = u/‘(foo,tl) implies that ik wis a

non-initial fundamental transfer equal to p ik .

u, — 00 . . .o, . .
PROOF. a) The transfer p () 1/ is an initial fundamental transfer, i.e.

dtg < t1,3dv € U, ui(foo,tl) = VU)(=o0,t1)>
VY € f(V), Y(—o0ito) = H and Y|, ,00) = 1
takes place because the hypothesis (2.9) and u|(— ) = uf(fooytl) hold. We take

into account the non-anticipation of f and we get the second statement of the
Theorem

U (—oo,t1) Uj(—os,t1)
po S = ool € Fw)} = {a] ool € FW)y=p TS

b) Is proved similarly to a). O
EXAMPLE 91. The system f : S — P*(S) defined by the double inequality
(3.1) (N W<zt |J w®
Eet—1,t) Eeft—1,t)

models the computation of the logical complement of u, made with a delay of one
time unit. Suppose that it is non-anticipatory and denote by u = X[o,2), U =

X[o,00) the inputs for which the inequalities () w(§) < z(t) < U u(),

- §€[t—1,1) cet—1,1)
(&) <yt)< U v(&) become

EE[t—1,1) ceft—1,t)

(3.2) X(—00,01U[3,00) () < Z() < X(—o0,1)u(2,00) (1)

(3.3) X(=00,0] (1) < Y(t) < X(—o0,1)(D)-

From (8.3) we infer that
VY € f(0):Y)(~o0,0) = 1 and Yj1,00) = 0
and, because
Uj(—00,1) = V|(=00,1)>

we have that (1 = 0)=(1 Ytz 0) is an initial fundamental transfer ((2.9)
is true). From the inequalities (3.2), (3.3) we also infer that

Yy € f(v),Y)11,00) = 0,

Vo € f(u),r)3,00) = 1,
ie. 0'5Y 1 is a non-initial fundamental transfer (by Theorem 230).

In general, the transitions v € 1 Y0 and v e Y52 1 are not monoto-

nous. We ask in what conditions, if we add the (absolute inertia) requirements®

(3.4) et =0)-z(t) < [ (&),

et t+6)

2if 7 switches from 0 to 1, then it remains 1 more than § time units; if  switches from 1 to
0, then it remains 0 more than § time units
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(35) w(t=0)-2() < [ =€)

Eeftt+6]
where 6 > 0, to (3.1) with u = X[ 9), i-e. to (3.2), monotony is true. Monotony
means that x switches from 1 to 0 in the interval (0,1] and that in this interval it
cannot switch from 0 to 1 and then from 1 to 0 again. Let 0 <t <tg <t3 <1 be
such that

z(ty —0) - 2(t1) = z(ta — 0) - 2(t2) = x(ts — 0) - x(ts) = 1.

Then, from the fulfillment of (3.4) and (3. 5) we have tog —t; > 6,t3 —ta > 6,
meamng that 1 > tg —ty > 26. Thus, if 6 > 5 , such t1,ta,ts do not exist and any

Y=Y 0 s a monotonous transition. Similarly, 6 > % implies the fact that

any vy €0 Y59 1 s monotonous.

Another condition is also required here: after having switched from 1 to 0 in
the interval (0,1], x is also allowed to switch from 0 to 1 in the interval (2,3]. This
gives 6 < 3.

The conclusion is the following: for 6 € [%,3), the system g obtained by inter-

secting (3.1), (3.4), (3.5), wherew = X[ 9, has the hazard-free transfers 1 M,

UL,3
0 5%,

vyel

4. The composition of the fundamental transfers

REMARK 87. Theorem 232 to follow constructs the "union’V of the fundamental

uwd_ uf,
transfers p =" 1! and u’ 230 1 i a), respectively of the fundamental

0

u
transfers lttogry) W and @' [2—>3> " in b) similarly to our procedure from Remark
70. The theorem represents the version of Theorem 208 when the four accesses are

synchronous, p is initial in a), final in b) and i, 1" are final values in a) and b).

THEOREM 232. Let f : U — P*(S™), U € P*(S™) be a non-anticipatory
system satisfying the conditions:
i) U is closed under translations and under ’concatenation’

VdeR,Yu e Uuor? €U,
Vte R,Vu € UV €U, U+ X(—oop) V" X[t,00) € Us
it) non-anticipation* ¥t € R, Yu € U, Yv € U,
(U)[t,00) = Vjft,00) and {x(t)]x € f(u)} ={y(t)ly € f(v)}) =
= {700 [z € f(W)} = {Yr.o0)ly € F(0)};
iii) time invariance
Vd € R,Vu €U, f(uot?) = {zorlx € f(u)}.

a) Suppose that ty < t1, to < t3, u®,ul, vt € U and p, i, u"" € B™ are arbitrary
with
Vr € f(u0)7x|(—oo,to) = K,
Va € f(uo)vxﬂtl,oo) = ,U/,
1
Ui~

.1
oo,ta) = V(=

vyef( )y|t200)

Ootz)
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V' € f(ul),xi[tam) =u".
Denote d = t1 — ty and

Ue = u’ - X(—oo,t:+e) D (ul © TCH_E)

: X[t1+€,00)
fore > 0. We have
VI € f(Ue), T)(—oote) = My

VT € f(Ue), T|[t34dte,00) = T8
. . u(\)(foc,tl) L. u\l[tz,tg) . Lo
meaning that if w =" u' is initial fundamental and ' =7 @ is non-initial

uE — 00, € . . oy . .
fundamental, then u (Zontptate) W' s initial fundamental. In other words, if

f(u®) transfers synchronously the initial value p in the final value ' and if f(u')
transfers synchronously the final value 1/ in the final value p'’, then f(u.) transfers
synchronously the initial value p in the final value u”.

b) Suppose that to < t1, to < t3, u®,v°,ul, vt € U and p,u', " € B™ are given
such that

(4.1) u?( = v|0(

—oort0) = Vl(—oc0,t0)?
(4.2) Yy € F(00), Yjjtg,00) = Mo
(4.3) Va € f(uo),:q[thoo) =,
(44) Ui(oet2) = Vj(—oo,ta)
(4.5) Yy € F(01), Yity,00) = 1
(4.6) va' € f(ul), @)y, 0y = 1"

With the notations d =t —ta, v = v° and

(4.7) e = u’ - X(—oco,t1+¢) P (Ul o TdJrg) * X[t1+e,00)

e >0, we have

(4.8) Ue| (—00,t0) = Vl(—o0,t0)?

(4.9) VY € f(0): Yito,00) = 1

(4.10) VE € f(Ue) Tltytate,n0) = 1

This means that if p u?[tgtl) w, o “hgm ' are non-initial fundamental, then
Yell

f0Lgdre) W' is mon-initial fundamental (if f(u®) transfers synchronously the

final value p in the final value ' and if f(u') transfers synchronously the final
value p' in the final value ', then f(u.) transfers synchronously the final value p
in the final value p').
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PRrOOF. b) First of all remark that, by i), u. given by (4.7) belongs to U.
The equality (4.8) is satisfied because for any € > 0, we have t; +¢& > t1 > to,
and from the definition of v, we have

~ 4.7 o (41) o o~
Ue|(—ooite) = U(—oco,te) = Y|(—co,to) = Yl(—o0,t0)"

The relation (4.9) is true because it coincides with the hypothesis (4.2).
Prove (4.10). From (4.4) and from the non-anticipation of f we infer

{ZJ| oot2]|y € flvh)} = {x‘ oot2]|$ € f(u)}
and taking into account (4.5), we can see that
(4.11) Y (t)ly € fF(')} = {2/ (t2)]2" € f(u)} = .
The time invariance of f implies that

(a]a € f(ut o7 )} = (o 07 la’ € fuh)},

thus
(4.12) {2/ (t2)]2" € f(uh)} = {2 (t1 + &)|z" € f(ul o T9TE)}.
From

~ 0
Ue|(—oo,t1+e) = U|(—o0,t14¢)
and from the non-anticipation we get

{2 (Cootr4e 1T € flUe)} = {2 ooty 1l € fu®)}.
In particular, we have
(4.13) {Z(t1+¢)|T € f(Te)} = {x(ty +¢)|x € f(u®)}.
Then

(@14) {3t +e)F € f(@))
ﬁnyamyefww}

(4.12)

CLY Gty + o)r € f0)} =

UL ) € flul)) =

o (h + e)la” € flu o7},
Because

(415) a5\[t1+5,oo) = (ul ° Td+8)\[t1+€,00)7

(4.14), (4.15) and the non-anticipation* of f show that

(4.16) (Tt e.00) T € f(U)} = {2f, 4o ooyl € Flu! 077F9)}

But the fact that t3 +d+¢ > t; + ¢ and

(4.17) {2l e 2" € Fu' 0 79)} = {(2" 0 7)1ty e 00 [ € f(u')}

indicate the truth of

~ ~ ~ (4.16)
{x|[t3+d+s,oo)|x € flug)} = {xTI[t3+d+s,oo)|x” € f(Ul © 7d+€)} =

(4.17) (4.6)
20 4@ 0Ty tare ol € F)} = {2, ol € flut)} £ 0,

So, (4.10) is proved. O
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DEFINITION 92. We use the notations from the previous theorem and we sup-
pose that the requirements stated there are fulfilled. We have the following partial
law of composition of the fundamental transfers

0 1 ~
Ul(—oo,t1) 4 y Yltagts) g Ue|(—oo,tg+d+e) gy
(=" p)v =)= - :
u(\)[to~t1> ’ ’ u\l[t2wt3> " Ue|[tg,tg+dte) g
(b =7V =7 )= =T

5. A special case of the composition of the fundamental transfers

THEOREM 233. Assume that the system f is non-anticipatory. The following
statements are true: N
a) for any t; < ta, w € U and u, 1, " € B™, such that the transfers p (5w

w, Hlltagra) w’ are fundamental, the transfer p Hlogpr) w” is fundamental;
b) suppose that t1 < ta < ts, uw € U and p, p', 1’ € B™ are arbitrary and satisfy
the property that the transfers u Hlltagra) w o Hlltzyts) ' are fundamental. Then the

Wty t3) gy -
transfer p =" " is fundamental.

/

PROOF. a) By hypothesis there are tg < t1,v € U and v’ € U, such that

Uj(—o0,ty) = V|(=o0,t1): VY € F(V), Yj(—o0,t0) = 1 and Y|z, .00) = 1,

"

Uj(—o0,t2) = Vi(—oouta) Y € (W) Uitz 00) = 1"

Because v(_co,ty) = ’u" from the non-anticipation of f we have

(—00,150)7

{y\(—oo,to)w € f(v)} = {yf(—oo,to)|y/ € f(’t)/)} = H

thus

/

Uj(—oco,t2) = U\(_oo,tz);vZ/ € f(v'), yf(_oo,to) = pand y\/[tQ,oo) =p

"

u —oo, .
is true, meaning that the transfer u 52 w1 is fundamental.

b) is made similarly with a). O

REMARK 88. In the conditions of and with the notations from the previous the-
orem, we have the following partial law of composition of the fundamental transfers:

(,U “\(*S,ﬁ) Iu/) Vi (Iu/ u\[i}@) ,UU) =u u\(*jth) ‘u//.

)

Ullta,t3) gy Ullty,t3) gy
=S5 = ST

("= Wy v

)

representing a special case of Definition 92. Theorem 233 restates the results from
Theorem 232 under a simplified form. For example in Theorem 232, a) we have
u® = ul. For this reason the requirements of closure of U under the concatenation of
the inputs and of non-anticipation® are removed. Because u® = u' and t, =ty the
requirements of closure of U under translations and of time invariance disappear

too.
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6. The fundamental mode

THEOREM 234. Consider the system f supposed to be non-anticipatory and let
u € U be a fixed input. The following statements are equivalent:
a) there are (t.) € Seq, (u*) € U and (u*) € B"™ such that

V€ f(u®), (—ooty) = 1 and Tjt, o) = 1,

_ .0 _ .1 2
U (—00,t1) = Uj(—o0,t1)r U|(=00,t2) = Uj(—oo,ts)r U|(—00,t3) = Uj(—oo,tz)> "

Va € f(u), @jy.00) = 12, VT € F(UP), T|15.00) = 117, V2 € F(U?), 2|1y 00) = 1*, -5

b) there are (t;) € Seq and (u¥) € B" such that the transfers p® '—=" pt,
Vit 22 M) 3 e fundamental;
c) there are (t;) € Seq and (u*) € B™ such that the transfers p°

U (oo, t2) U (— oo t3) o
O TR 20 T 3, are dnitial fundamental.

U|(—oo,t
I( 1) 17

PROOF. a) = b) Let (), (v*) and (u*) be like in a). Because

(6.1) U|(—oo0,t) = u?(,oo’tl), Va € f(uo),:q(_oo,to) = uo and T[4, ,00) = Nl

Uf(—oo,t1)

is true, p° p' is an initial fundamental transfer. The fact that

(62) U|(—oo,tr) = u?(—oo,h): Vo € f(u0)7x‘[t1»00) = ‘ul’

(6.3) Uj(—s0,ts) = U(—oorty)r YT € F(U'), 2)ty,00) = 1

Ullt1,t2) o . s
—*" 112 is non-initial fundamental etc.

b) = c) There are (t;) and (u¥) such that 0

9 Yllta,t3)

implies that !
[(=o0,t1)  q 1 Ylt1.t2) o
— K, p 7 MY
p?, ... are fundamental. Like in Theorem 233 and Definition 88,

0 Yl(—oo,ta) 9 0 Yl(—oo,t1) 1 1 Ylt1,t2) 9
N T (e B M (T T

)

0 Yl(=o0,t3) 3

U|(—o0y,t2) U|[tg,t3)
pO ST = (ST ) v (B ),

are initial fundamental.

¢) = a) Consider the sequences (t;) and (u*) like in ¢). The fact that

(0 1Tt g initial fundamental shows the existence of u® € U such that

(6.1) holds true and because 0 =%’ 42 is initial fundamental, we obtain the
existence of u! € U, with (6.3) true etc. The statement from a) is true. O

DEFINITION 93. If one of the previous properties a), b), ¢) from Theorem 234
is satisfied, the input u is called o fundamental (operating) mode (of f).

THEOREM 235. If f is non-anticipatory and tg < t1,u € U,u, i/ € B™ are
fized, then the fact that

Va € f(u), 2)(~o0t) = 1 and Tz, 00) = 1

implies that u is a fundamental mode of f.
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PROOF. There are the sequences (¢}) € Seq and (u*) € B" satisfying

ty = to, t) = t1,t), k > 2 arbitrary,

Pl =t = ==y
Ul(=oouth) , UY(=ooith)  , Ul(=oouth) N
We note that p — " p/,p  —7 p,p  —7 /... are initial fundamental
transfers. m

REMARK 89. The evolution of f under the fundamental mode u may be inter-
preted as a discrete time symbolic evolution of a deterministic system of the form

k uk+1

1
W=z0) S plt=a()S S b =2k +1) ">

ceey

0
u — 00, . . .
where the initial fundamental transfer 1° [(Zoegr) ut is identified to the sym-

0
bolic transfer £(0) > (1) and a non-initial fundamental transfer of rank k > 1,
k
kM) kL s dentified with the symbolic transfer (k) “> x(k + 1).
In the hypothesis of the previous Theorem, the symbolic evolution may be con-
sidered to be given by a finite sequence

k

pwl = 2(0) L pt = 2(1) w it =2 (k 4+ 1)

where k can be 0.

In addition: if the input v € U is a fundamental mode of f, then a set V C U
exists with the property that v € V. (for example V. = {v}) and fjv is strongly
synchronous, i.e. it satisfies

A(tx) € Seq,Yu €V,

E(Mk) € B",Vx € f(u), T|(—o0,ty) = 1 and Vk > 1x(ty) = uk.

EXAMPLE 92. In Ezample 91 the inputs u and v are fundamental modes of both
systems f,g.

EXAMPLE 93. The deterministic system f:S — S,

B l,u= X[0,1)U[2,3)U[4,5)U...
Vu € 5, flu) = { 0, otherwise

satisfies the following properties: there are u = X[o 1)u2,3)u[4,5)u..., the unbounded
sequence 0 < 2 < 4 < ... of real numbers, the family

u’ = X[0,1)> u' = X[0,1)U[2,3)> U’ = X[0,1)U[2,3)U[4,5)) -+
of inputs and the binary null sequence 0, € B,k € N such that
F(®)|(—00,0) = 0 and f(u°)|2,00) = 0,
0 1
U‘(,oog) = ul(*OO,Q)’ 'Uzl(,oo74) = u‘(7m74),

FuM)|a,00) = 0, f(u?)(j6,00) =0, ...
The statements

FW)(—oo2) = FU0)|(o02ps F())(—o0,a) = F(u)|(—oo,a]s -

are false, since f is anticipatory. Therefore u is not a fundamental mode of f.
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THEOREM 236. Let u be a fundamental mode of the non-anticipatory system
f. Then there are the families (t;) € Seq and (u¥) € U such that

Vk € N, uj(—oo,tpsr) = uf

(—o0o,tk+1)

and all v, k € N are fundamental modes of f.

PrOOF. From Theorem 234, c) there are (t;) € Seq and (u*) € B" such
3

that the transfers p° Yoo pt, 1l g u2, ul Hlizooyts) are initial
fundamental, i.e. there is the sequence (u*) € U with
0 0 0 1
U|(—oco,t1) = U|(—c0,ty1) Vo € f(u”),T)(—coty) = and T|j, 00) =
1

2 Vo € f(u? ,T|

(—oco,t3)? —o0,to) — MO and L|[t3,00) = “37

) T|(
Uj(—o0rtz) = Ul(—oortr)r Y € F(U'), 2)(—oote) = 10 and T[4, o0) = 117,
U|(—oco,ts) = U] ) T|(

0 1 2
Ul(=oo,t1) Y(=o0,t2) U(=ooyt3) s
Thus 0 =37 gty p® "3 42 40 "33 43 L are initial fundamental and

by Theorem 235, we obtain that all ©* k € N are fundamental modes of f. (]

THEOREM 237. Let be the non-anticipatory system f and the sequences (tx) €
Seq, (u¥) € U, such that the following properties to be fulfilled:
a) for any v € S and any sequences (&) € Seq, (v*) € U, from
k
VEk € N, ¥)(—006,11) = V(—o0,640)

we infer that v € U;
b) u¥, k € N are all fundamental modes of f;

¢) we have
k _ okt
(6.4) VEk € N, U oo tyiy) = (=00 tht1)’
Then u defined by
(6.5) Vk € Nvu\(—oo,tk+1) = u\k(—OO,tk+1)

is a fundamental mode of f.

PrROOF. Remark that (6.4) allows us writing (6.5) and that, by hypothesis
a), this last relation defines a unique w, that belongs to U . Prove that u is a
fundamental mode of f.

The fact that all u* are fundamental modes of f shows the existence of (t§,)y €

Seq, (uF*' ) € U and (") € B™ such that
Vo € f(ur), 7)oy = 1 and e o) = ',

k k0 k k1 k k2
u =u u =u u =u
[(—o0,t}) [(—o0,t§)” I(—o0,t§) [(—o0,t§)’ “l(—o0,t5) [(—o0,th)

Vz € f(ukl)vx\[t;“,oo) - ,uk27vx € f(uk2)7x|[t§,oo) = ,U“k37

YV € f(uk?’),x‘[tiyoo) =kt
Define the sequence (t;,) € Seq by
(tr) = {t}.|k1 € N, ks € N}
and we fix the association N 3 k +— (kq, ko) € N x N characterized by

Vk € N, tj, =ty
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This association, together with the requirement of non-anticipation of f give us the
possibility to define
Vk € N, u'* = ufrk2

Vi e N, p'* = plke,
The sequences (t},), (u'*), (/%) fulfill the requirement a) of Theorem 234. O

7. A property of existence

THEOREM 238. Let be the non-anticipatory system f. Suppose that the follow-
ing requirements are fulfilled:
a) for any (tx) € Seq and any sequence (u¥) € U of inputs, we have u® -
X(—ooit) @ U~ Xito,t1) B U~ Xty 1) @ - € U?;
b) f satisfies the following property of race-free initialization with bounded ini-
tial time:
Vue U, 3u e B", 3ty € R,Vr € f(u), T|(—o0,te) = 15
¢) f is absolutely race-free stable with a bounded final time, i.e.
Vu e U,3p' € B",3t; € R,Va € f(u), 2, 00) = 1
Then, for any sequence (u¥) € U of inputs, there are the time instants (ti,) €
Seq such that the input

ﬂ = uo . X(_OO7t1) (&) Ul . X[tl,tQ) D ...EPH ’U,k . X[tk7tk+1) D ...
s a fundamental mode of f.

ProoOF. Consider some real number § > 0 and the arbitrary sequence (u*) € U
of inputs. From b) we infer the existence of u € B™ and to € R, such that

Vz € f(uo)vx‘(—oo,to) = ,U“07
while from c) we have the existence of u' € B" and t; € R with t; >ty + § and
vz € f(ul), z)y,00) = 1"
Furthermore, from a) we have that u" - X(=oo,ty) D ul - X[t1,00) € U, while from c)
the existence of > € B" and t, € R, such that t; > ¢; + 6 and
Ve € F(u” X(—ootr) DU Xty 00))s Ulfta,00) = M

is inferred. The construction of (¢;) and the fact that (t5) € Seq are obvious. On
the other hand, by taking in consideration a), u obtained in this way belongs to U.
The statement that u is a fundamental mode of f is inferred from the equalities

Uj(—o0,t1) = Ul(—o0,t1)r U (—o0rta) = (U0 X(—ootr) B U X[ty,00))I(—o0sta)s -

0

REMARK 90. The previous theorem shows that in certain circumstances on f,
for any sequence (u*) € U, if t; is large enough, the system stabilizes with all its

Ui _ oot u? oot
states from t1 and (z(—oo +0) == 2(t1)) = (a(—o00 4+ 0) I a(ty)) s
ingtial fundamental and does not depend on the choice of x € f(u). Moreover, for

3The properties of closure of U from Theorem 237, a) and Theorem 238, a) are equivalent
and they are called safety.
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any k and any time instant ty,, if we let u* participate for a sufficiently long time
at the construction of u,

~ _ ok

W\lth,tky1) = W|[th,trpr)?

i.e. if tyrq is large enough, then the system stabilizes with all its states from tii1
~ k

u u
and the transfer (z(ty) ! 2(tgs1)) = (x(tr) |
fundamental and is independent on the choice of x € f(u).

EXAMPLE 94. Here are a few examples of sets U that satisfy the requirement
a) of Theorem 238.

i) U = {\}, where A € B™. We identify again the constant with the constant
function. The set U has that property because for any unbounded sequence tqg < t1 <
ty < ... and any (uF) € U, we have u® - X(_ oo 10) @ U" - X(1o.11) DU - X[ty,12) D oo = A.

it) The previous example is generalized in the following way. Let H C B™ be
a non-empty set. The set U C S defined by

U = {u| there are (\*) € H and (t;) € Seq
such that u = \° - X(=o0,to) B A “Xito,t) A’ X[ty t2) D o}

has the required property. In particular, for H = B™, we obtain the set U = S(™) .
i) Take some non-empty set V.C S, for which

U = {u] there are (u¥) € V and (t,) € Seq

thoth41) [t oth41)

x(tk41)) is non-initial

such that u = u® - X(—oo,to) P ul - X[to,t:1) D u? - X[t1,t) © -
The set U has the property a) of Theorem 238.

THEOREM 239. If the non-anticipatory system f satisfies the following proper-
ties:
a) race-free initialization with a bounded initial time

Vu e U,3u € B", 3ty € R,Vx € f(u), T|(—o0,te) = M
b) absolute race-free stability with a bounded final time
Vue U, 3’ € B", 3ty € R,Va € f(u), o), 00) = 1
then
Yu € U,3p e B™, 3’ € B, 3ty € R, It; > to,
Vo € f(u), T)(—ooty) = 1 and T[4, o0y = 1,

i.e. for any u, there are some p, ' and ty < t1 such that p g w' is initial

fundamental.
PROOF. From the first part of the proof of Theorem 238, where u° = u. O
THEOREM 240. Suppose that the non-anticipatory system f is absolutely race-
free stable with a bounded final time, i.e.
Vu € U,3u € B", 3t € R,V € f(u), 2|)t,00) = p-
Then Yu € U, there are the vectors p, ' € B™ and the numbers ty < t1 such that

the transfer p ikt 50 1 is mon-initial fundamental.

ProOF. It is sufficient to consider the property: for any v € U, there are p and
to such that Vo € f(u), z|j4y,00) = 5 then p/ = p and t; > to arbitrary make that
the conclusion of the theorem be fulfilled. O
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8. Fundamental mode, special case

DEFINITION 94. For any t; € R, the prefix of u € S is the function uy, €

SM) given by
B u(t),t <ty
g, (t) = { u(ty —0),t >t

THEOREM 241. Let f be a non-anticipatory system and let be the input v € U.

For any (t) € Seq and (u*) € B™ such that ug,, ut,, Uty, ... € U and
Vo € fug,), T)(—oo,ty) = u° and [y ,00) = ut

Vo € f(ug,), T|[ty,00) = u?, Vr e J(ey), T|tg,00) = wd, Va e J(uey), Tty 00) = JTA
u s a fundamental mode of f.

PROOF. Define the sequence (u*) € U by u* = w,,,,k € N. Because, for
any k > 0, we have u|(_co,t,,,) = u‘k(_oo,tkﬂ), the statement of Theorem 234, a) is
true. U

COROLLARY 2. Suppose that the non-anticipatory system f and the input u € U
are given. If the sequences (ty) € Seq, (i*) € B" and (\*) € B™ satisfy

u(t) = A0 X(—oo,tl)(t) DA X[tl,tg)(t) DA% X[tg,tg)(t) D ...
ALY X o) @A X000 A X(coortn) B A Xty ) B AT Xftg00): - € U and
Vo € f()\o),x‘(_oo,to) =1 and x|, 00) = 1,
Ve € FOA" X (Coot) @A Xty 00))s Tlfta00) = 1,
Vz € f()\0 “X(=ooytr) D AL Xits,t2) P A2 X[t2,oo))713|[t3,oo) =13,

then u is a fundamental mode of f.

Proo¥r. This is a special case of the previous theorem when u;, = AY, U,
A% X(oortn) AL Xty o0y Uts = A% X(—ooi) B A Xftrta) @ AT Xtms00)s - U

REMARK 91. Theorem 241 gives a new perspective on the fundamental mode:
when Vk > 1, the stabilization of x to the value x(ty) is a direct consequence of the
fact that, before ti, u has stabilized to the value u(ty —0). Thus, at the time instants
ty,to,t3,..., u and all x € f(u) are in equilibrium

Vk > 1Vt > tg,ug, (1) = u(ty, — 0) and Vo € f(uy, ), z(t) = x(tk)
and we consider the equilibrium be true at the time instant ty also under the form
Vit < to,u(t) = u(to — 0) and Vo € f(uy ), x(t) = x(tg — 0)

by a suitable choice of tg.

The situation described in Theorem 241 includes the possibilities Ik > 1,u;, =
Uy, and 3k > 1,u = uy, respectively.

Corollary 2 represents that special case of Theorem 241, when u is constant in
the intervals (—oo,t1), [t1,1t2), [t2,t3), ...

The following theorem is an adaptation of Theorem 238 to the present context.
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THEOREM 242. Let the non-anticipatory system f be given and let H C B™ be
a non-empty set. If

@) U=1{\" X(Cooitr) @A Xptrta) BN Xjioty) @ - |(N*) € H, (tr) € Seq};

b) f has race-free initial states with a bounded initial time

Vue U, 3u e B", 3o € R,Vx € f(u), T|(—o0,te) = I3
c) f is relatively race-free stable with a bounded final time
VueUNS™, 3/ € B, 3t € R,Vx € F (W), 24,00) = 1,
then for any (\¥) € H, there are the time instants (t;;) € Seq such that the input
u = AO . X(foo,h) D Al . X[tl,tz) &) )\2 . X[tQ,ts) D ...

is a fundamental mode of f.

PROOF. We just remark that the closure property of Theorem 238, a) is fulfilled
and that A% A% X(_ 0 1) @A X100 AV X(coortn) AT Xfirote) B AT Xtas00)r - €

UnS™, for any (A\¥) € H and any (t3) € Seq. The proof is similar with that of
Theorem 238. O

9. Accessibility vs fundamental mode

THEOREM 243. Let be the non-anticipatory system f : U — P*(S™) U €
P*(S™)) and we suppose that the following requirements are fulfilled:
a) for any (t;) € Seq and any (u*) € U, we have u° X (=o0,te) P ul - Xito,t1) P
u? N1 ) Do €U,
b) f has race-free initial states and a bounded initial time, i.e.
Vu e U,3u € B", 3t € R,V € f(u), 2|(—0o,t) = 15

c¢) any vector from B™ is a final state under an input having arbitrary initial
segment
Ve B, Vu € UVt € R,3v € U, 3t' > t,
Uj(—o0,t) = V|(—o0,t) ANA VY € f(V), |1t ,00) = M-
Then there is some pi° € B™ such that for any sequence pu* € B, k > 1 of binary

vectors, there are a sequence (t;) € Seq and an input u € U such that u° Azt

Uty tp) Uity ta)
phy ot S 2?25 k3, L are fundamental transfers.

PROOF. Let v° € U be an arbitrary input. From b) we get the existence of
1% € B" and tg € R depending on v, such that

(9.1) Vz € f(vo),x‘(,oo,to) =u°.

Fix the sequence u* € B",k > 1 and an arbitrary number § > 0. At this moment
the property c¢) implies the existence of u® € U and t; > to + § such that

U —oorte) = U(—ooty) @A V2 € f(u°), 21, 00) = 1,
of u' € U and ty > t; + 6 such that

U(lj(_oo7t1) = u|1(—oo,t1) and Vz € f(ul),acmm) = u2,
of u? € U and t3 > ty + 6 such that

Ul vorty) = Ul _oorty) ANA VT € [(U2), 2|1y 00) = 117,
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0 1
Ui Uilty,t) UiTtg,ts)

2
—o0,t1) \
=t ot S 2, 25 3, L are funda-

Obviously, the transfers ;¥
mental.

The way that (tx) was constructed guarantees the fact that this sequence be-
longs to Seq. Thus, by a), the input @ defined as

U= X(Cooty) DU X[y 1) DU Xt 1) D -
belongs to U. We have
~ _ .0 ~ _ 1 ~ .2
U (—o0,t1) = Uj(—oo0,t1)r U|(=00,t2) = Wj(—oo,tz)r U|(—00,t3) = U|(—oo,tz)7 "

. Uj(—o0,t1) Uity 1) Uty t3)
wherefrom we infer that the transfers p® —=" pb, pt =57 p?, p? 25 3,

0 1
Ul(—oo,t1) 1 1 Yltrt2) o o Yilta,tz) 3

equal to p® = pt,opt S o2 p? 25 4P, .. (see Theorem 231) are
fundamental. O

THEOREM 244. Let the non-anticipatory system f : U — P*(S™) be given
and suppose that the conditions:
a) for any (t,) € Seq and any sequence (u¥) € U of inputs, we have u
X(=c0,to) P u' “X[to,t1) P u? - X(t1,tz) B - € U;
b) f has race-free initial states and a bounded initial time
Vu e U,3u € B", 3t € R,V € f(u), 2|(—0o,t) = 15
c) the vectors from B™ are accessible final states in the following manner

Vue B",Vu e UVt e R,IN e U, 3t > ¢,

0.

VY € fU- X(—oot) DA Xft,00))s Yl[t,00) = I
are fulfilled (we have identified A € B™ with the constant input A € U ). Then there
is u° € B™ such that for any sequence ¥ € B™, k > 1 of binary vectors, there are
the time instants (t;,) € Seq and the constants (\*) € B™ with the property that

Uj(=oo,t1) W[ty 1) U|[1g,t3)
pO IS ot S 2?25 3, are fundamental transfers; we have

denoted
u= AO . X(—oo,h) D Al . X[tl,tz) D )\2 . X[t27t3) D ...

PROOF. Special case of Theorem 243. O

THEOREM 245. Suppose that the non-anticipatory system f is given, such that
a) for any (tr) € Seq and any (u*) € U, we have u® - X(=o0,t0) D U X(to,t1) @
U Xty t2) D - € U;
b) f has race-free initial states and a bounded initial time
Vue U, 3peB", 3t c R,Vr € f(u), 2)(—00,t) = 13
¢) f has accessible final states and a bounded time under the form
36> 0,YueB",Vue UVt e R,Jv e U, 3t € (t,t +9),

Uj(—s0,t) = V|(—o0yt) ANA VY € f(V), Y|t ,00) = M-
Then there are 6 > 0 and ° € B™ such that for any sequence p* € B", k > 1, we
have the existence of to € R and u € U with the property that u° Hlotg ) 1

W[t +6,t0428) W[t 426,t0+38)
LT 2w =R w3, L are fundamental transfers.



156 9. THE FUNDAMENTAL MODE

PROOF. Similar to that of Theorem 243. O

THEOREM 246. The non-anticipatory system f satisfies the requirements:
a) f has race-free initial states and a bounded initial time

Vu e U,3u € B", 3t € R,V € f(u), 2|(—0o,t) = 15
b) the vectors from B™ are accessible final states

Vu e B",Ju e U, 3t € R,V € f(u), 2|)t,00) = p-

Then
V' € B",3p € B",Ju € U, Ity € R, Ity > tg,
Ve € f(u), Z)(—coto) = K and x|, o) = '

l(—oout1)
=y

i.e. for any ', we have the existence of u,u,to and t1 > to, such that u “
is initial fundamental.

PRrOOF. Let ' € B™ be arbitrary and fixed. Item b) shows the existence of
u € U and t; € R, such that
Vo € f(u), 2 ,00) = .

Because of item a), we infer the existence of u € B™ and ¢ty € R that can be chosen
< t1 with

Vz € f(u)ax\(foo,to) = K.
O
REMARK 92. In the theorems of this section occurred the following accessibility
properties:
a) any vector from B™ is a final state under an input having an arbitrary initial
segment

Vue B, Yu e UVt e R,Fv e U, 3t > t,
Uj(—c0,t) = V|(—oo,t) AN VY € f(V), Y|t 00) = 15
b) version of a), where the access in a final state is made under a constant input
Vue B",Vu e UVt e R,IN € U, 3t > ¢,
VY € F(U- X(—oot) B A X[t,00))s Y[t 00) = H5
c¢) version of a), where the access in a final state is made in the following way
36> 0,YueB",Yue UVt e R,Jv e U,3t' € (t,t +9),
Uj(—c0,t) = V|(—oo,t) AN VY € f(V), Y|t/ 00) = 15

d) version of a), where the inputs under which the vectors from B™ are final
states do not have an arbitrary initial segment

Vu e B",Ju € U, 3t € R,V € f(u), 2|)t,00) = p-

We have the implications
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10. The fundamental mode relative to a function

DEFINITION 95. Let be the system f : U — P*(S™) U € P*(S™) and the
Boolean function F : B™ — B™. If the following property is fulfilled: Vt € R,
Yu e U, Yv € U,

Ve < t, F(u(§) = F(v(€) = {z)(~c0nlr € f(W)} = {Y)(~c0ly € f(v)}
we say that f is non-anticipatory relative to the function F'.

THEOREM 247. Let be f, F' and consider the following statements:

i) [ is non-anticipatory (in the sense of Definition 64);

it) f is non-anticipatory relative to F;

iii) f is an autonomous system.

Then:

a) the implications i )—1i)=—>1) are true;

b) if F is injective, then i)=—>1i) takes place;

¢) if F = u is the constant function, p € B™, then we have ii)=—>1ii).

PROOF. a) Suppose that f = X is autonomous, X € P*(S). We get that
vVt e R,Vu e U,Yv € U,

{2)(cooile € F(u)} = {] o gl2" € X} = {Y)(—ccly € F(0)}

represents the conclusion of implication ii), thus iii)==ii). Furthermore, we fix
t,u, v arbitrarily, such that

(10.1) Uj(—co,t) = V|(=o00,t);
(10.2) F(u())|(~00,) = F(0())|(=00,) =

= {7 (—ocglr € f(u)} = {Y)(—c,ly € f(0)}-
From (10.1) we infer

(10.3) F(u())(=o0,t) = F(0(-))|(=00,)»
thus, from (10.2), we get
(10.4) {2)(—ooglr € f(u)} = {Y)(—ooly € f(V)}.

In this way ii)==-1) is proved.
b) Let t € R,u € U,v € U be arbitrary with the property that

(10.5) U|(—co,t) = V|(—oo,t) — {x‘(,oo,t”x (S f(u)} = {y‘(,oo,t”y (S f(U)}

and (10.3) are true. Suppose also that F is injective. From (10.3) and from the
injectivity of F, (10.1) is inferred and, by taking into account (10.5), we get that
(10.4) is also true. i) has implied ii).

c) Let t € R,u € U,v € U be arbitrary such that (10.2) holds true. Then the
equation (10.3) is also fulfilled, from the fact that F' is constant. The conclusion
of (10.2) is true, thus (10.4) holds true. As ¢, u,v were arbitrary, we have obtained
that Yu € U,Yv € U, f(u) = f(v), thus f is autonomous. O

DEFINITION 96. Suppose that the system f is non-anticipatory relative to the
function F and let be u € U such that there are (t;) € Seq, (u¥) € U and u° € B"
satisfying the properties

Va € f(u°), @(—oote) = 1 and x|, o0y = F(u(ty —0)),
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VEk > 1,Y2 € f(ub), 2,1 .00) = F(ute1 —0)).
Then we say that the input u is o fundamental (operating) mode (of f) relative
to F.

REMARK 93. Let be the function u € U and the number t € R. We note that
the functions v € U having the property that

_ Fu(9),§ <t
eeRr0e) = p, i 5L

act here as prefives of u. In other words, v is the prefiz of u relative to F'. Definition
96 follows the idea from Theorem 241, where u* = F(u(t, — 0)),k > 1 We note
that those u* equal to uy, +1,k € N become prefives of u relative to I here.

In general, the fact that u is a fundamental mode of f relative to F' consists in
the non-anticipation of f relative to F' and in the existence of (t) € Seq, u° € B,
such that 1® == F(u(ty — 0)), F(u(ty — 0)) 25 F(u(ty — 0)), F(u(ts —
0)) EE F(u(ts — 0)),... are fundamental transfers.

We have the special case when F' is injective and (Theorem 247) the non-
anticipation of f relative to F' coincides with the non-anticipation of f.

Another special case is the one when F = p is the constant function; then
(Theorem 247) f is autonomous and there are (t;) € Seq,u® € B™ such that

U|(—o0,t1) Ulfty 1) Ultg,t3)
pO S o 2 o, 25 ... are fundamental transfers for any u € U.

We state the version of Theorem 238 valid in this context.

THEOREM 248. Let be the function F' and the system f non-anticipatory relative
to F. Suppose that the following properties are fulfilled:

a) for any (t,) € Seq and any sequence (u*) € U of inputs, we have u® -
X(~o0,t0) ut “Xito,t2) P u?- Xits ta) @ - € U;

b) race-free initialization with a bounded initial time

Vu e U,3u € B", 3t € R,V € f(u), T|(—0o,t) = 15
¢) F—relative race-free stability with a bounded final time
Yue UNSEY, 3t € R,V € f(u), 2),00) = Jim P(u(€).
Then for any sequence (u¥) € U N ng) of inputs, there are the time instants
(tx) € Seq such that the input
u=u’ X(~oo,t:) P ut - X[ty t2) B - D ut - X[tr tyar) @ o

is a fundamental mode of f relative to F.



Part 2

Delay theory






CHAPTER 10

Delays

The delays are the asynchronous systems f : S — P*(S) having the property
of race-free stability relative to the identity 1g : B — B. They represent the
mathematical models of the delay circuits. Delay theory is the mathematical theory
that considers the delay circuit as the fundamental circuit in digital electronics. The
modeling is made by using delays and Boolean functions. While the asynchronous
systems theory gives models at a synthetical level, with functional blocks, here the
most detailed level of modeling is considered, starting with the delays that occur
in gates and wires. The chapter surveys the traditional description of delays, then
some particular delays and examples.

1. Introduction. The delay circuit

REMARK 94. Because in delay theory the fundamental circuit of digital electrical
engineering is considered the delay circuit, also called the delay buffer, the purpose
of this introduction is that of giving some informal explanations on that circuit.

The delay circuit is the circuit that computes the identity 1g : B — B. Let
f 8 — P*(S) be a system that models it. With the common identification of the
model and the modeled circuit, w € S is called the input of the circuit and any
x € f(u) is called its (possible) state.

Note that any 1-dimensional signal is an admissible input for the delay buffer
and this is why the attribute ’admissible’ given to the input is gemerally omitted.
The fact that all signals are admissible inputs does not mean necessarily that the
engineer that handles the circuit has the possibility to use any signal as input, but
rather that the circuit has the capability to respond to any signal when applied to
1ts input.

Given the real parameters 0 < dy min < drmax; 0 < df min < df,max, the mean-

ing of the indexes r’ and ’f’ is that of ’'raise’ (switch of a signal from 0 to 1) and
fall” (switch of a signal from 1 to Q).
Our analysis starts with the statement that

Va € f(0),z =0,

i.e. 0 is a point of equilibrium of f under the null input.
The input satisfying u|(—oo,t,) = 0 switches at the time instant to from 0 to 1.
Let be t1 >ty with the property

V¢ € [to, t1),u(§) = 1.

The states of the system do mot switch simultaneously with the input
Vr € f(u),z(ty) =0.

We have a look at the values that the functions x € f(u) take in t1.

161
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a) 0 <t1 —to < drmin; at t1, the state of the circuit is necessarily null:
to < t1 <to+dpmin and Yz € f(u),z(t;) =0.

The interpretation is that the circuit’s inertia did not allow such a fast switch of
the state from 0 to 1 to occur.
b) drmin < t1 —to < drmax; at t1, the state of the circuit may be 0 or 1:

to+ drmin <t1 <to+ drmax and 3z € f(u),x(t1) =0 and Iz € f(u),x(t1) = 1.

An uncertainty occurs here (generated by several causes).
¢) ti —to > drmax; at t1, the delay circuit has necessarily the state value equal
to1:
ty > to+ dr,max and Vx € f(u)vx(tl) =1

The cause (the input equal to 1) was sufficiently persistent in order to have an effect
(the state of the circuit is necessarily 1).

The intuitive description of the circuit continues by asking that the statements
dual to the previous ones take place, as follows by the replacement of r’,0,1 by
’f7,1,0.

The circuit computes the identity on B because if u is constant for a sufficiently
long time, x becomes constant also and equal to u.

A manner of describing the previous facts is given by the following system

N wo<am<  |J  ul)

ge[t_dr,max¢) ge[t—df,maxyt)
xt—0)-zt)< () ),
ge[t_dr,minyt)

xt—0)-zt)< () u(®
E€[t—df,min;t)
even if this is not quite obvious for the moment.

Remark that several aspects of non-anticipation and time invariance have ac-
companied the previous modeling of the delay circuit.

From a historical point of view, equations and inequalities written with R — B
functions that model the asynchronous circuits are dated the 80’s. The paper [36]
anticipated the birth of delay theory' and [40] is the work where this theory was
exposed for the first time.

2. An overview of delays: informal definitions

REMARK 95. In this section we present some aspects of the intuition situated
behind delay theory.

By the word ’delay’ two things are understood: a real non-negative number
and a logical condition (in the sense of model). Usually in definitions they occur
together, since a complete separation is very difficult. Our present purpose is to

LThe facts presented there were written under the impression of what the author has called
’the inertia’s paradox’, i.e. the non-formalized theories dedicated to the models of the asynchronus
circuits lead to the possibility that two inertial delay buffers connected in series are not an inertial
delay buffer. The ’paradox’ was solved later when we have outlined the existence of several types
of inertia and only part of them (such as the bounded delays) have the property of closure under
serial connection.
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show how the real numbers are specified by some informal rules of modeling. We
have the

Classification of delays. In other words, the terminology is the following.
As numbers, the delays are:

i) transport delays [13], [28], or transmission delays for transitions [15], [16];

ii) inertial delays [13], or thresholds true for cancellation [15], [16].

The classification of the delays as logical conditions follows. These, the so-
called delay conditions, define models and idioms like “fized delay’ will often be used
as a short form for ’fixed delay condition’ or ’fixed delay property’ or ’fixed delay
model’. Thus, from the timing properties point of view, we have:

J) unbounded delays;

7j) bounded delays;

Jjj) fized delays,

while from the memory properties point of view, the delays are:

1) pure delays, i.e. delays without memory;

2) inertial delays, i.e. delays with memory.

A special attention will be given to avoiding the confusions due to the termino-
logical abuse remarked at i) and 2).

In the following chapters by delay we shall (also) mean an asynchronous system
f 8 — P*(S) that is race-free stable relative to the identical function 1g, the model
of the delay circuit. The classification of those systems will obey the classification
of the logical conditions j), 77), 7ij); 1), 2).

Now we give the informal definitions of these concepts.

DEFINITION 97. (informal) The transport delays [13], [28] represent the
‘time interval’ between a transition in an input to the gate and a corresponding
output transition. If the output transition occurs from 0 to 1, the delay is rising,
otherwise falling’.

DEFINITION 98. (informal) The inertial delays represent [13] the 'minimum
amount of time during which an input signal must persist to affect a change at the
output’.

In [17] the same notion is called the latency delay while in [28], by mak-
ing use of the VHDL hardware description language, the reject time. In [8] the
terminology is that of threshold period.

REMARK 96. We have the following Convention: the distinct numbers trans-
port delay and inertial delay are generally taken to be equal [17] when the last
exists, i.e. in the presence of inertia. We quote the following opinion [15], [16]:
"A common form of implementation of the inertial delay model’ (here we refer to
2)) ’is the one in which the transmission delay for transitions d is the same as the
threshold for cancellation. In other words, when a transition appears at the input’
(the statement means that u(t — 0) - u(t) = 1 or u(t — 0) - u(t) = 1), ’the transition
will appear at the output after d’ (determinism plus x(t+d—0)-xz(t+d) =1 or
2(t+d—=0)-z(t+d) = 1) 'unless a second transition occurs within that period’
(i.e. only if V€ € (t,t + d), Du(§) =0).

DEFINITION 99. (informal) The unbounded delay is defined by:

a) [8): ’a delay may take on any finite value’;

2The definition does not refer to a time interval, but to its length.
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b) [14]: 'no bound on the magnitude is known a priori, except that it is positive
and finite’.

REMARK 97. The quotations from the previous definition refer to the delay-
number in the sense i) of transport delay from our classification.

We mention the existence of a similar idea of unboundedness, called the fini-
tary weak-fairness that is defined® in discrete time by: ’for every run of the
system®, there is an unknown bound k such that no enabled transition is postponed
for more than k consecutive times.’

The unbounded delay model is generally evaluated [6] to be ’robust to delay
variations’, but unrealistically conservative’. In other words, it is too general.

DEFINITION 100. (informal) The bounded delay (in [28] called the min-max
delay) is defined as:

a) [8): ’a delay may have any value in a given time interval’;

b) [14]: a delay is bounded “if an upper and lower bound on its magnitude are
known before the synthesis or analysis of the circuit is bequn’;

c) [6]: ‘every component is assumed to have an uncertain delay, that lies be-
tween given upper and lower bounds. The delay bounds take into account potential
delay variations due to statistical fluctuations in the fabrication process, variations
in ambient temperature, power supply etc.’;

d) [13]: ‘In practice, manufactured circuits of the same design may have differ-
ent gate delays due to manufacturing fluctuations in delay related parameters such
as capacitance, resistivity and transistors sizes. To be practical, we need to provide
an analysis for not just a manufactured instance of a design but the entire family of
manufactured circuits of the same design. To model manufacturing uncertainties,
we assume the gate delays to be variable within closed intervals. Therefore a com-
plete delay analysis determines the delays of circuits with variable gate delays. ..’

REMARK 98. The bounded delay model is considered to be the most realistic of
the three: unbounded, bounded and fized.

On the other hand, non-conflicting differences occur in the approaches when
defining and using the bounded delays in different variants: from having no lower
bounds or upper bounds, the poorest case of the bounded delay model, to having four
such bounds d, min < drmax; df,min < dfmax , the richest case of bounded delay that
makes use of the distinction between the rising and the falling delays. The more
detailed the model is, the more difficult is its handling and the more realistic are its
results.

DEFINITION 101. (informal) The fixed delay is a special case of bounded delay,
when it is assumed to have a fized value’ [8] and the lower bounds of the delays are
equal to the upper bounds of the delays making the delay be fixed, known.

REMARK 99. The fized delay model is considered to be very unrealistic, in the
sense that small variations of the delays due to variations in the ambient tempera-
ture, power supply,... cause great, unacceptable differences between the model and
the modeled circuit. [6]: ‘Since it is almost impossible to obtain a precise delay of
a component in a chip, this is not a realistic model for timing verification purpose’.

3Rajeev Alur, Thomas Henzinger, Finitary Fairness, Proc. of the Ninth Annual IEEE Sym-
posium on Logic in Computer Science, LICS 1994, pp 52-61
4something like Va € f(u)
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DEFINITION 102. (informal) The pure delay, or ideal delay is defined like
this:

a) [14]: a delay is considered to be pure 'if it transmits each event on its input to
its output®, i.e. it corresponds to a pure translation in time of the input waveform’;

b) [6]: ‘a pure delay simply shifts a waveform in time without altering its shape’.

The same idea is found in [13], where the pure delay timed Boolean functions
are defined.

REMARK 100. [16] refers to the pure delays, by considering that ‘This model
is unrealistic in the sense that practical gates will not transit a pulse caused by two
transitions very close together whereas the model guarantees that every transition
will be at the output irrespective of the proximity of the successive pulses’.

DEFINITION 103. (informal) The inertial delay (or latency delay) has gen-
erated the most controversies, see also [6], [13]. The following opinions are gener-
ally accepted:

a) the inertial delays [15], [16] 'model the fact that the practical circuits will not
respond to two transitions which are very close together. The inertial delay model
is one in which input transitions are replicated at the output after some period of
time unless two transitions occur at the input within some defined period, in which
case neither transition is transmitted’;

b) [14]: ’pulses shorter than or equal to the delay magnitude are not transmit-
ted’, see also the Convention in Remark 96, since here by delay magnitude it is
understood the transport delay equal to the inertial delay;

c) [8]: ‘an inertial delay has a threshold period d. Pulses of duration less
than d are filtered out’. Here the inertial delay is the inertial delay model and the
Convention is not necessarily true.

DEFINITION 104. (alternative) In [1], [17] the authors show intuitively what
inertia is and then two wvariants of fixed and bounded inertial delays respectively
are mentioned. We reproduce only the second variant from [1], called there the
non-deterministic inertial delay, for the reason of making the exposure as simple as
possible. For the same reason, we have changed the language and the notations. The
state x° € B and the real numbers 0 < dpin < dmax are given and the requirements
are

i) Vt € [0, duin), 2(t) = 2° (initialization);

i) Vt > duyin, Dz(t) = 1 = ' € suppDu N [t — dmax,t — dmin] such that
z(t) = w(t’) and (¢',t)N suppDu = P;

i11) Vt € suppDu, (t,t+dmax]N suppDu # O or [t+dmin, t+dmax|N suppDz # (.

REMARK 101. In [1] we can find the following remark relative to Definition
104: ‘one could assume that changes should persist for at least ly time units but
propagated after ly,lo > 11 time’. In other words, for the sake of accuracy one could
abandon the ‘common form of implementation of the inertial delay model’ from the
Convention in Remark 96.

DEFINITION 105. (alternative) In the approach from [5], two variants namely
of fixed and of bounded inertial delays are given too. From them we reproduce the
second one under the form:

i) Da(t) = 1= V¢ € [t — dmin, 1), u(§) = (t);

Sthe ’events’ on the input are u(t — 0) - u(t) = 1,u(t — 0) - u(t) = 1 and the ’events’ on the
1

output are z(¢t —0) - z(t) = 1,z(t — 0) - z(¢t) =
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ii) YA € B, ((V€ € [t,t + dmax), u(&) = A) = (36 € [t,t + dmax), V€ € [6,1 +
dmax), (§) = A)).

REMARK 102. We make brief comments and a comparison between Definitions
104, 105:

- in the second definition, the initialization is missing. If we start by definition
from null initial conditions, then the initialization is not mecessary, while if we
reason for any possible initial value, then the initialization is also missing. The
possibility that the initialization is missing in Definition 104 is given by the value
dmin = 0, too;

- Definition 104, ii) and Definition 105, i) essentially express the same idea,
even if they are obuviously not equivalent. Similarly, Definition 104, iii) expresses
the idea from Definition 105, ii).

A subtle problem arising here is if in our classification of the delays from Re-
mark 95, any of 1), i) is consistent with any of j), i), 7j) and with any of 1), 2).
At the present level of the debates, we just confirm that both i), ii) are consistent
with 2), as many authors show.

3. The universal delay
NOTATION 24. For A € B, we make the notation
Sc(A) = {z|z € S, tlim x(t) = A}
DEFINITION 106. The system fyp : S — P*(S) defined by
Se(0),if u € S.(0)
Yu € S,fUD(U) = Sc(1),if ue S.(1)
S,if ue S\ S.
is called the universal delay (condition, or property, or model).

REMARK 103. The system fyp models the delay circuits, i.e. the circuits that
compute the identity 1g : B — B and gives the minimal information about these
circuits.

THEOREM 249. The initial state function ¢, : S — P*(B) of fup is constant:
Vu € S, (u) = {0, 1}.
THEOREM 250. The system fyp s self-dual.

PrOOF. We note that S = S*. We have
S.(0)*,if we S.(0)
Vue S, fipu) ={Z|x € fup(@)} = Sc(D)*jifue S.(1) =

S*ifueS\S.

Se(1),if u € Se(1)

=1 S:0),if ue S.(0) = fup(u).
SyifueS\S.
O

REMARK 104. The inverse of fyp is the system defined as: fg%, : S — P*(9),

S\ Sc(1),if x € Sc(0)
Ve e S, frh(x) =1{ S\ S.(0),if v € S.(1)
S\ S,if v €S\ S.
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THEOREM 251. fup o fup = fup-

PrOOF. We have two possibilities.
a) If u € S¢(N), A € B, then

(fupofup)w) = |J fun)= |J funly) =

yEfup(u) YES(N)

- U Se(A) = Se(N) = fup(u).
YyESe(N)
b) If u € S\ Se, then

(fupo fup)(u) = U fup(y) = UfUD(y) D U fuply) = U S=S5.
yEfup(u) yeSs y€S\Se yeS\Se.

The inclusion Yu € S\ S, (fup o fup)(u) C S is obvious, thus (fypo fup)(u) = S.
Because

Vu € S\SmeD(u) = S?
in this case the statement of the theorem is also true. O

THEOREM 252. The system fuyp is time invariant.

PrOOF. Let u € S and d € R be arbitrary. We can write

S.(0),if uord e S.(0) Sc(0),if u € S.(0)
fup(uord) =< S.(1),if uort € S.(1) =< Sc(1),if ue S.(1) =
S,ifuorde S\ S, SyifueS\Se

Sc(0),if u € S.(0)
={zorlr el S.(1),ifueS.(1) }={xorz e fup(u)}.
S,ifue S\ S,

O

THEOREM 253. The system fyp is non-anticipatory in the sense of Definition
64 and in the sense of all concepts of non-anticipation contained in Definition 65.

PROOF. We show the first statement, because the others are similar. Let u,v €
S and t € R be arbitrary while the hypothesis states u|(—oo,r) = V|(—o0,r)- We have

{7)(coolr € fup(u)} = {2)(—scyflz € S} = {¥)(—0,yfly € fup(v)}.
O

THEOREM 254. The system fup is non-anticipatory®.

PROOF. Let u,v € S and t € R be arbitrary, such that w;; o) = v[t,00)-

Because {z(t)|z € fup(u)} = {0,1} = {y(t)ly € fup(v)} is true, we have the
possibilities:
a) 3\ € B,u,v € S¢(A). Then

{2),00) |7 € fup(u)} = {2)}t,00) |2 € Sc(N)} = {yjjt,00) [y € fup(v) };
b) u,v € S\ S and

{x\[t,oo)|x € fup(u)} = {x|[t,oo)|x €S} = {y|[t,oo)|y € fup(v)}.
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THEOREM 255. The system fyp fulfills the following surjectivity properties:
Ve e S,Ju e S,z € fup(u);

Y € B,Ju € S,Vx € fup(u),z(co —0) = u.
THEOREM 256. The system fyp is race-free relatively stable and race-free stable
relative to the identity 1g : B — B.

Proor. We note that S. = Si;,. and
Yu € S¢,Vo € fup(u),x(co —0) = u(oco — 0),

thus the two statements are true. O

4. Delays

THEOREM 257. Let be the system f : S — P*(S). The following statements are
equivalent:

a) f C fup;

b) f is race-free stable relative to 1g.

PROOF. a) = b) The system fyp is race-free stable relative to 1g (Theorem
256) and any of its subsystems with the support set S satisfies the same property.
b) = a) Suppose that f is race-free stable relative to 1g, meaning that

VA € B,Vu € Sc(A),Vr € f(u),z(co—0) = A

If u € S.(0), then f(u) C S.(0); if u € S.(1), then f(u) C Sc(1) and if w € S\ S,
then f(u) C S, i.e. a) is true. O

DEeFINITION 107. If a system f : S — P*(S) satisfies one of the previous
equivalent conditions a), b), then it is called a delay condition or shortly a delay.

REMARK 105. The delays model the delay circuits, giving in general some more
information about their behavior than fyp.

The concept of delay should be identified with that of unbounded delay from
Definition 99, in spite of the fact that there is no need of positive transport delay
here. This means that we agree rather with item a) than with item b) from that
definition.

THEOREM 258. Any subsystem f: S — P*(S) of a delay g is a delay.

DEFINITION 108. Let be the delays f,g with f C g. Then f is called a subdelay
of g.

REMARK 106. The system fyp is the greatest delay relative to the inclusion C
of the delays.

THEOREM 259. In the presence of the axiom of choice, any delay has a deter-
ministic subdelay.

PROOF. See Theorem 127 and its proof. O

THEOREM 260. In the inclusion f C g of delays, if g is deterministic, then f
is deterministic and f = g.

PRrROOF. See Theorem 126. O
THEOREM 261. The dual of a delay f is a delay too.
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PROOF. The set S is invariant to complements: Yu,u € S = u € S. On the
other hand, let A € B and u € S.(\) be arbitrary. The statement follows from the
fact that

f*(w) = {3z € f@)} C {Tlr € Sc(N)} = Se(N).

THEOREM 262. The serial connection of two delays is a delay too.

PROOF. Given the delays f,g: S — P*(S), the requirement for the existence
of their serial connection go f : S — P*(S), Yu € S, (go f)(u) = {y|Fz € f(u),y €
g(z)} is that |J f(u) C S and it is fulfilled. Furthermore, for any u € S, we have:

u€eS

(gof)lw) C (go fup)(w) (Theorem 74 a))
(fupo fup)(u) (Theorem 74 b))
fup(u). (Theorem 251)

N

O

THEOREM 263. The intersection of the delays f,g : S — P*(S) with Yu €
S, flu)Ng(u) #0 is a delay.

PRrROOF. The intersection of the delays f, g as systems was defined by fNg :
W — P*(S),Yu e W, (fNg)(u) = f(u) N g(u) where it was supposed that the set
W ={ulue SNS, f(u) Ng(u) # @} is non-empty. We can see from the hypothesis
that W = S. f N g is a subdelay of f from Theorem 258. O

REMARK 107. The previous theorem is easily generalized in the following man-
ner. Given f,g:S — P*(S), where f is an arbitrary system and g is a delay such
that Yu € S, f(u) N g(u) # O, the intersection f N g is a delay. We have here the
special case when g = fyp; the delay h given by

Vu € S, h(u) = f(u) N fup(u)
is called the delay defined (or that is induced) by the system f.
THEOREM 264. The union of two delays is a delay too.

ProOF. Consider the delays f, g and their union f U g. We can see that the
domain of fUgis SUS = S and we take some arbitrary A € B and u € S.(\). We
have f(u)U g(u) C Sc(N). O

THEOREM 265. Let be the deterministic delays f1, fo : S — S satisfying
Yu € SVt € R, f1(u)(t) < fa(u)(?)
and the system f : S — P*(S) defined by
Vu € S, f(u) ={z|Vt € R, fi(u)(t) < x(t) < fa(u)(t)}.
Then f is a delay.

PROOF. Let A € B and u € S.()) be arbitrary. There are t1,t2 € R such that
fl (U)choo) = f2(u)|[t2,oo) = /\, thus f(u) C SL()\) O

REMARK 108. There are not autonomous delays. On the other hand, the only
Boolean function for which Fy is a delay, d € R is F = 1g.
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5. Examples of delays
EXAMPLE 95. The deterministic delay I;: S — S is defined for d € R as:
YVu € S, Iy(u)(t) = u(t — d).

Instead of 1y we use the notation I. Remark that I is the neuter element of the
serial connection of the delays: for any delay f we have

Vue S, (fol)(u) ={y|Fz,x =u,y € f(x)} = f(u

Vu € S, (Io f)(U) ={y|Fz,z € f(u),y =2} = (U)-
The delay I has all the properties of the ideal combinational systems. Extra prop-
erties will be presented later.

EXAMPLE 96. Let be di,ds,...,di, € R and f the delay resulted by the union
1g, Ulg, U..Uly, . If di,do, ..., dy, are distinct, we have

Vu € S, f(u) = {uor™ uor® .. word},
EXAMPLE 97. We define the delay f by
Vu e S, f(u)(t) = {zfu(t —d) < z(t) <u(t —d)Uu(t —d)},
where d,d’" € R, see Theorem 265.
EXAMPLE 98. We define f: S — S,

Yu € S, f(u)(t) = lnn ﬂ
wE[E 00)
First of all we note that the function in §: (| w(w) is monotonous increasing,
wElg,00)

implying that the limit exists. Second, if u € S.(\) for A € B, then f(u) = \, thus
f is a delay, indeed. We have

Yu € S, f(u)(t) = {
Similarly the deterministic system f: S — S,

‘WESmew:gg)LJU@OZ{Oque&m)

1, else
w€[¢,00)

1,if ue S.(1)

0, else

is a delay.
REMARK 109. Inspired by the previous example and making use of Theorem
265, we define the non-deterministic delay f : S — P*(S) by

Yu e S, f(u f{x|x€Shm ﬂ <hm U
wE[ﬁ c0) WE [§,00)
We note that f coincides with fup.
EXAMPLE 99. The deterministic system f: S — S defined by
Vue S, fw)(t)= [ ul)
£€lt,o0)

is a delay. Indeed, for allw € S we have f(u) € S and this is proved similarly with
Theorem 23. On the other hand, if A € B exists such that u € S.()\), then there is
t1 € R such that ujjt, o) = A and f(u)t,,00) = A, thus f(u) € Sc(A).
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The deterministic system f: S — S,
Yue S fwt) = |J u®
£€lt,o0)
is a delay too.

ExXAMPLE 100. From the previous example and from Theorem 265 we get that
the system

Vue S, fw)(t) ={z| () uw(@<z@®)< |J u©}
£€(t,00) £e(t,00)
is a delay.
ExAMPLE 101. For 0 < m < d, by Theorem 23, the function
x(t) = N w®
Eet—d,t—d+m)]

is a signal, thus x(t) = f(u)(t) defines a deterministic delay. Three other delays
are defined by’ :

z(t)= [ w®);

§E[t,t+d]

z(t) = U w®);

Eet—d,t—d+m)
zt)= |J w©.
€[t t+d]
EXAMPLE 102. The following inequalities define non-deterministic delays:

M w©) < =(t) < ul);

Eet—d,t]

) w) <x(t) <u(t—d)Uu(t);

EEt—d,t]
N uw@<zt)< |J u®
g€ft—d,t) g€t t+d)

for any d > 0. The possibility d = 0 exists, when the three delays coincide with the
deterministic delay I.

ExampLE 103. The system

(5.1) xz(t—0)-z(t)=x(t -0 —0) - ﬂ z(€) - u(t),
£Et—b5,t)

(5.2) 2t —0)-z(t) =2t —6.-0)- () (&) ul),
EE[t—6,,t)

0, > 0,0f > 0, defines a delay iff 6, = 65 = 0. In this situation it coincides with
the identity I.

6The first and the third of these four delays, in their discrete time version, are called by
Moisil slow acting relays: slow closing relay and slow releasing relay.
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PROOF. Suppose that 6, > 0 and let be the input u = X/ 5), where ¢ € (0,6,).
We solve the system formed by the equations (5.1), (5.2).

t < 0. We have
(5.3) z(t—0)-z(t) =0,
(5.4) w(t—0)-2(t) =a(t—6—-0)- [ (),

EE [tfér 7t)

for which the only solution satisfies z(t) = 0. Indeed, the assumption that ¢, < 0
exists such that xj(_+,) = 1 makes (5.4) be false for ¢ < ty. The assumption that
t < 0 exists such that z(_ = 0,2(t) = 1 makes (5.3) be false in ¢.

t=0.

(5.5) z(0—0)-x(0) =1,
(5.6) (0 —0) - 2(0) = 0,
thus z(0) = 1.
t € (0,9).
(5.7) w(t—0)-z(t)=x(t—6;,—0)- [ =),
EE[t—by,t)
(5.8) x(t—0)-z(t)=0
implies z(t) = 1.
t €6,6,]
(5.9) z(t—0)-z(t) =0,
(5.10) 2(t—0) x{t)=a(t-06.-0)- ) (9
§Elt—brt)
and, in (5.10), z(t — 6, — 0) = 0, thus z(¢) = 1.
t>0b,.
(5.11) xz(t—0)-z(t) =0,
(5.12) 2(t—0) - z(t)=x(t—06.-0)- ) ().
£eft—06,5t)
Equation (5.12) with V¢ > 6,,z(t — 6, —0)- () z(§) =1 is contradictory and
EE[t—6,,1)

the assumption that z has a switch from 1 to 0 somewhere at the right of §, gives
a contradiction too.

Similarly, 6 > 0 gives a contradiction, thus 6, = §; = 0 and the system (5.1),
(5.2) becomes

(5.13) z(t—0)-2z(t) =xz(t—0) - u(t),

(5.14) x(t—0)-z(t) = z(t —0) - u(t).

Let to € R be the number with the property that x| +,) = (—00+0), Uj(—oo,ty) =
u(—o0 + 0). The substitution in (5.13), (5.14), for ¢t < tg, of x(t — 0),x(t), with
x(—00+0), and of u(t—0), u(t), with u(—o0+40), shows that 2(—oco+0) = u(—00+0).
If we suppose against all reason that (5.13), (5.14) differs from I, then there is
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t1 > to such that 2(_c ¢,) = U|(—oo,t,) and x(t1) # u(t1). However, this assumption
implies that

(5.15) x(t; —0) - 2(ty) = z(t; — 0) - z(t1),

(5.16) x(t1 —0) - z(t1) = x(t1 — 0) - z(t1)
is an inconsistent system. Thus (5.13), (5.14) coincides with I. O






CHAPTER 11

Bounded delays

The bounded delays f are those for which the switch of the input from 0 to 1
at to : u(to — 0) - u(tp) = 1 produces a switch from 0 to 1 of the corresponding state
in a bounded time interval

Vo € f(u), E|t1 S R,tl —tp € [dr,mimdr,max] and .I}(tl — 0) '.I}(tl) =1

where 0 < dy min < dr,max are independent of the remainder variables. The bounded
delays f are also asked to fulfill the dual of the previous property relative to the
parameters 0 < df min < df max -

The purpose of this chapter is that of giving several definitions of the bounded
delays.

1. The first definition of the bounded delays

THEOREM 266. Let be the numbers 0 < m, <d,, 0 <my <dy. The following
statements are equivalent:
a) the inequality

(1.1) N u(§) <a(t) < U u(§)
Ee[tfdr,tferrmr] EE[tfdf,tfdf%»mf]

has a solution x € S, for any u € S;
b) for any u € S, we have

(1.2) N w®< U u(®);
Eelt—dy t—dr+my) Eeft—dy,t—dy+my]

¢) the following inequalities

(1.3) dr —m, <djanddy —my <d,
are fulfilled.
PROOF. a) = b) is obvious.
b) = a) For any u € S, the functions N u(§), u(§)
eft—dy t—dr+m,] eft—dy,t—ds+my]

belong to S and they are solutions of (1.1).
b) = ¢) Show that b) implies

(1.4) Vte R, [t—d,,t —d, +m, N[t —dp,t —ds+mys] #0.
Indeed, if (1.4) is false then
FteR, [t —dpt—d. +m. N[t —ds,t —df+mg] =0.

n these few words we only proposed to stand out the boundedness of the delays. This is
not a correct definition.

175
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Let ¢ be such a fixed time instant. Then there is some u € S with the property
that supp u D [t —dy,t — dr +my], suppuN [t —dys,t — df +my] = (), making the
hypothesis b) false, whence a contradiction.

From (1.4) we infer that for any ¢t € R we can write

not (t—dr +m, <t—dport—ds+my <t—d,)

—t—d+m,2>t—dyandt —dy+my >t —d,,
ie. ¢) is true.
¢) = b) We run backwards the previous reasoning: c¢) implies (1.4) and let
t € R be arbitrary and fixed, for which there is some &, € [t — d,,t — d, +m,] N
[t —d¢,t —dsf +my]. For any u € S, we can write that

N w) <u) < U u(f).

Eeft—dy t—dr+my] eft—dy t—ds+my]
O

DEFINITION 109. In Theorem 266, any of the equivalent properties a), b), c)
is called the consistency condition of the bounded delays (CCgp). If one
of them is true, we use to say that the system (1.1) fulfills CCpp or that the
numbers m,,d,,m¢,dy fulfill that condition.

REMARK 110. We give some special cases of fulfillment of CCpp, written under
the form (1.3):

a) d. = dy = d; CCpp is fulfilled under the form m, >0, my > 0;

b) my =d, and my = dy; CCpp takes the form d, >0, dy > 0 and it is true;

¢) my, =my =0; CCpp is equivalent to d, = ds.

THEOREM 267. Let be 0 < m, <d,, 0 <my <dy. The inequality (1.1) defines
a delay iff CCpp s fulfilled.

PRrROOF. If The two functions N u(§) < U u(§) are
Ce[t—dr t—dr+my) eft—dy,t—dy+my]
delays and by Theorem 265, (1.1) defines also a delay.
Only if The assumption that CCgp is false means the existence of some non-
admissible u € S, i.e. (1.1) does not define a system. O

DEFINITION 110. Given the real numbers 0 < m, < d,, 0 < my < dy such that
d. —m, <dy, dy —my < d,, the delay

N u(€) < a(t) < U u(f),

geft—dr t—dr+m,] eft—dy,t—ds+my]

denoted fir ™% s called the boundedness property. m,,ms are the (ris-

ing, falling) inertial delays (thresholds true for cancellation); d,,ds are the
(rising, falling) upper bounds of the transport delays (of the transmis-
sion delays for transitions) and the differences dy — my, respectively d, — m,
are called the (rising, falling) lower bounds of the transport delays (of the
transmission delays for transitions).

DEFINITION 111. A delay f is called bounded if there are 0 < m, < d,,
0 < my < dy such that CCpp is fulfilled and f is a subdelay of fryy™ """ If f C

My, drymyg,dy . My, dyp,myg,df
BD , we say that f satisfies the boundedness property fg, .
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REMARK 111. We give an interpretation to the bounded delays by supposing
that the input is the constant function. Then we have VA € B, fpm® ™% ()) =
{A\}, meaning that any bounded delay f has the same property: YA € B,Vx €
JF), z(t) = A

Let u = Xjo,5),6 > 0 be an input for which we analyze the states of the system

My dr,myg,ds . . .
sp T in two situations, 6 < m,. and § > m,.

a) 6 < my,
0 < 2(t) < Xjaj—m;.d;+6)(t)-

a.1) t € (—oo,dy —my),x(t) = 0; the I-pulse did not propagate from the
input to the states,

a.2)t € [dy —myg,df + 6),2(t) = 0 and x(t) = 1 are both possible, the
1-pulse may have propagated to the states,

a.8) t € [dy + 6,00),2(t) = 0, the I-pulse on the input cannot affect any
longer the states.

b) 6 >my,
X(dy,dy—m,+8) (1) < Z() < Xja;—my,a,+6) (1)

b.1) t € (—oo,dy —my),x(t) = 0; the I-pulse did not propagate to the
states,

b.2)t € [dy—my,d,),x(t) = 0 orz(t) = 1; the 1-pulse may have propagated
to the states,

b.3) t € [d,d. — m, + 6),x(t) = 1; the I-pulse has surely propagated from
the input to the states,

b.4)t € ldy —my+6,ds+6),2(t) =0 or z(t) = 1; the I-pulse may still
produce effects,

b.5)t € [df + 6,00),z(t) = 0; the I-pulse on the input cannot influence
any longer the states.

Here we add the dual remarks as followed by taking u = X (oo 0)u[s,00) a5 well

as the fact that the states of a subdelay f C fggd“mf’df may run only through

some of the previous possibilities.
THEOREM 268. Let be 0 <m, < d,, 0 <my < dy such that CCpp is fulfilled.
For any uw € S and any x € S, the following statements are equivalent:
0) & € fp "0 (u)
b) Iy € S, x(t) = N u(@) Uy(t) - U u(§).
eft—dr t—dr+m,] Eeft—dy t—ds+my]

PROOF. a) = b) It is verified the fact that for any ¢t € R and any val-

ues N u§) = U u(§) = 0; N u(§) = 0,
feft—dy t—dr+m,] eft—dy t—dy+my] Ceft—d, t—dr+m,]
U u(§) = 1and N u(§) = U u(§) = 1, from
E€[t—dy t—ds+my] £€[t—dy,t—drt+my] (elt—dy,t—dj+my]
z e fpmt ™l (4) we get that
z(t) = N u(§) Ua(t) - U u(§).-
CE[t—dy t—dr+m,) eft—dy t—ds+my]

b) = a) For any t and any y € S we have

N uw®< N w©uy)- U u(€) <

Ce[t—dy t—dr+my) Ee[t—dr t—dr+my) Eelt—dys t—ds+my]
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< N wu U uwe= U  ue.

E€ft—dy,t—dr+m,] Eeft—ds,t—dp+my] eft—dy,t—ds+my]
O

2. The equality between the initial values of the input and of the state

THEOREM 269. Given the numbers 0 < m, <d,,0 <my < dy such that CCp

is true, then Yu € S,Vx € fglgd”mf’df (u), we have x(—o0 + 0) = u(—o0 +0).

PROOF. Let u € S and z € fipy™ ™ (u) be arbitrarily chosen. The case

u(—00 + 0) = 0 is equivalent to 3d € R, u(t) < X[g,00)(f)- In this case we have
l'(t) < U U(é) < U X[d,00) (é) = X[derffmf,oo) (t)7

§€[t—df,t—df+mf] §E[t—df,t—df+mf]
ie. x(—o0o+0)=0.
The case u(—oo +0) = 1 is equivalent to 3d € R, u(t) > X(_,a)(t), so we have

z(t) > m u(§) > m X(—o0,d) (§) = X(—o0,dtdy—m,) (£);
Eelt—dy t—dr+m,) EElt—dy t—dr+my)
ie. z(—oc0+0)=1. O

My, dp,

COROLLARY 3. fpo® ™% hag race-free initial states and a bounded initial
time:
Yu € S,3tg € R,Vx € fgg’d”"f’df (1), T)(—00,to) = u(—00 +0).
PROOF. The first statement is inferred from Theorem 269, while the second
statement follows from the proof of the same theorem. O

COROLLARY 4. The initial state function of fglgd“mf’df, ¢o : S — B is defined
by
Yu € S, ¢g(u) = u(—oo +0).

COROLLARY 5. If f is a bounded delay, then it has race-free initial states, a
bounded initial time and its initial state function ¢, : S — B is defined by

Yu € S, ¢pg(u) = u(—oo + 0).

PrOOF. We take into account Corollary 3 and Theorem 35; Corollary 3 and

Theorem 37; Corollary 4 and Theorem 39. O
3. Order
THEOREM 270. Let be 0 < m, < dr, 0 < my < df and 0 < m). < d,

’ !
m,.,d

0 < m/ < d} such that CCpp is fulfilled for each of fdrmsds gl
The following statements are equivalent:
a) we have

'y d

Mmy,dr,my.dy c mydym’,d

BD BD )
b) the following inequalities

d, —m, <d.—m, <dy <df,
dy —m’ <dy —my <d, <d,

are true.
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PROOF. a) is equivalent to Yu € S,Vt € R,

N ww< () uo<

geft—d. t—d.+m] e€lt—dy t—dp+my]
< U we< U we
Ee€ft—dy,t—ds+my] EEft—d) t—d+m/]

iff the following inclusions
[t—d.,t—d.+m.]D[t—drt—d. +my]
[t —ds,t —dp+my] C [t —dyt—dy+m]
hold for all ¢t € R iff b) is true, taking into account CCpp, too. O

REMARK 112. Due to statement b) of the previous theorem, fmm the con-

My dpymy,dy My dpymy,dy ’"L drynlfyd/
and fgp C fgb , we

junction of the statements f C fgp
conclude that:

- if the bounded delay f has the upper bounds of the transmission delays for
transitions d,,dy, then it also has the upper bounds d. d’

- if the bounded delay f has the lower bounds of the transmission delays for
transitions dy —my, d —my, then it has also the lower bounds d'y —m/y, d. —m;..

On the other hand, given the bounded delay f, it is interesting the study of that

delay fm“d“mf A with
Z) fcfmr,dr,mf df
oy m'y dy rrdym’s,d)
ii) for any fBT s cueh that fc faymmrl
m d' ,m/, d'
f?

BD
‘ drymyp,dy . ‘
i.e. gg mMIAE s the smallest boundedness property, in the sense of the in-

clusion, satisfied by f.

THEOREM 271. Let be f,g : S — P*(S). If f C g and g is a bounded delay,
then f is a bounded delay too.

My dr,my,d
, we have fgppy"" T C

PROOF. Suppose that g C fm“d“mf s where m, dy,mg,dy fulfill CCpp. By
Theorem 258, the system f is a delay. Obviously, it is bounded. O

4. Duality
THEOREM 272. The dual delay of fmr’d”mf a5 fg%’df’m“dr.

ProoOF. First of all we note that CCpp for the two systems is the same. Thus
the bounded delay fm“ mmids oxists iff the bounded delay s dpomedr ovists. We
prove the duality between the two delays. We have:

Vo € S ( mr, Mg, df) (u) _

= {7| N u(€) < x(t) < U u(€)} =

EE[t—dy, t—dr+m,y) Eeft—dy t—ds+my]
= {7l N u(§) = a(t) = U u(§)} =
geft—dy,t—dpt+m,] EE[t*df,tfdermf]

— {«f N u(€) < x(t) < U u(€)} = frh @ ().

Ceft—dy,t—ds+my) Eelt—dr t—dr+my)
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O
THEOREM 273. If f is a bounded delay, then f* is a bounded delay too.
PrOOF. The inclusion f C fm“d“mf’d implies
Vu €S, f*(u) = {Z|z € f@)} C {Flx € fuy® ™Y @)} =
o ympd g m,dy
(gb MY () = fpb T ().
But this fact results directly from Theorems 49 and 272 also because we have
fcfmr,dr,mf,df <:>f* Cfmf,df,mr,dr- 0

THEOREM 274. The system fm“ mAs s self-dual iff dy = dy and m, = my.

ProoOF. If Obvious.
Only if Because (1.1) and

N u(€) < a(t) < U u(€)
Eelt—dyf t—ds+my] ceft—dy t—dr+my]

must have the same solutions, we infer that d, = dy and d, — m, = dy —my, i.e.
the statement of the theorem. O

5. Serial connection

THEOREM 275. Let be the numbers 0 <m, <d,, 0 <mjy <dy and 0 < m <
d., 0 < m’f < d’f such that d, > dy —my, dy > d, —m, and d,, > d’ffm’f,

mpe+m.. dpt+d,. mp+m/p,ds+d
d; > d, —mj. are true. Then fgp, A

we have

is a bounded delay and

m dr,mf,df o fmr,dr,mf,df - mr—&-mr,d +dr,mf+mf,df+df
BD BD — JBD

PrROOF. Weremark that dy+dy > d,+d.—m,—m;, d,+d;. > dy+ds—ms—m’,

mpe+m.. dpt+d,. mp+m/p,ds+d
thus CCpp is fulfilled again and fj/, TSI makes a sense.

We prove
gLBvdrvmfvdf OfgLBdr,mf ,dyf c fmr+m dr+dr,mf+mf,df+df
Let w € S and y € ( ggd“mf’df o fglg’d“mf’df)(u) be arbitrary, for which = €
ggd“mf’df (u) exists, such that y € fggd“mf’df (x). The following statements
(5.1) N u(w) < z(§) < U u(w),
we[g_dryg_dr+77lr] we[ﬁ—dfyﬁ—df-‘rmf]
(52) N =©<s< U 29
eft—dl t—dl +m!] §E[t—d) t—d+m)]

are true for all t € R and £ € R, wherefrom we get

m u(§) = m ﬂ u(w) <

geft—d,—d! t—dr—d,+m,+m!] geft—dl t—d. +m!]we[—d,,E—dr+m,)

< N 2(8) < y(t) < U z(€) <

¢eft—d! t—d,+m!) geft—d) t—d)y+m/,]
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< U U u(w) = U u(§).
SE[t—d} t—d}+m]we[f—ds,E—dy+my] §E€t—dp—d) t—dg—d}+myp+m/)]

mr—&-m dy +dr,m +m/;,ds+d
Thus y € fgp FERERTE ().

We prove that
me+m!.,d, +dr,mf+mf,df+df c m'r,d/r,m},d} Ofnlr7dr77nf7df
BD .

BD BD
We must show that for u € S and y € S with
(5.3) N u(€) <y(t) < U u(€),
c€ft—dp—d!. t—dp—dl4+mp+ml] g€ft—dy—d) t—dy—dj+ms+m!]

both of them arbitrary and fixed, there is some x € S such that (5.1), (5.2)

be fulfilled for all ¢ € R and all £ € R. There is {5 € R Such that Vy €

me+m,.,dn+d,. ,mp+m’,ds+d ooy d
BD ! P f( ) Vo € fm " f( )7 Vy € fBD JJ), by
Theorem 269 we have

mf,d’(

Y|(—c0,t0) = Tl(—o00rt) = Yl(—o0rte) = Ul(—c0,te) = U(—00 +0).

Against all reason, we can assume that there is ¢; > ¢y such that the previous
property be true for ¢ < ¢; and false for ¢t = ¢;. Suppose that y(¢1) = 0. From (5.3)

we have
m m u(w) =0,
efti—d t1—d! +m! |we[f—dr,E—dr+my]
ie.
3, ety —d. ty —d. +ml], N u(w) = 0.
wE[§; —dr,&y —drtmy]
The relation (5.1), written for £ = &, shows that we can choose z(&;) = 0 and
(5.2), written for ¢ = ¢4, is true because

N z(§) = (&) =

E€ft1—d] t1—d)+m/)]

in contradiction with the assumption made on the existence of ¢;. The same result
is obtained if we suppose that y(¢;) = 1. O

THEOREM 276. Relative to the serial connection, the set of the bounded delays
s a monotid, where the unit is I.

mr,dr,mf df mf d

Proor. From f C fgp "F taking into account

Theorems 74 and 275 we obtaln that

andngNN

My dyymp,ds oy m’s d mr,dr,mf,df my+m...d, +dr7mf+mf7df+df
gof Cygofpp Cf °fpD BD

Remark that I belongs to the monoid, because I = fo 00,0, O
REMARK 113. If f is an arbitrary delay, then by its serial connection with a
bounded delay, in general, we obtain an arbitrary delay (not a bounded delay).
Now combine the order of the boundedness properties from Theorem 270 with
Theorem 74, giving the compatibility between the serial connection and the order,
and with Theorem 275, related to the serial connection fB demdr fg,lgd“mf’df

mr,dr,mf df T‘ydrvm}'vdlf

in the following way. Let be the bounded delays fgp, ; Ib and
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1" 1 1" 1
m,. ,d,. My 7df

BD ,whereongng,ogmfgdf,ogmggd;,ogm’fgd',og
m;/ < d;:, 0< m; < d;, such that CCpgp s fulfilled three times. The implication

m, d, m, d, m// d// m// d//
oty T g Qg ooy Mg G
cf =
BD BD
1 1"

’ ’ ’ ’ " "
mr,dr,mf,df My, dpymy,dy m,. ,d, Mg 3df My dr,my,dy
= fBp °fgp C fBp o fBp

means that

7 1"

y=m, < d.—my <d; <dj,

T

d
dy —m; < d}—m}gdigdr

implies
d+d, —m, —m, < dy+d, —m, —m, <dy+d; <dy+d,
df +dy —my—m; < dp+d;—mp—my<d.+d. <d+d,.
The other situation P
R

" 1"

’ ’ ’ ’ " "
my,dr,my,dy My dyymly,dy My drymy,dy m,.,d, ,mg,d;
= fBD °fBD C /D °fBD

18 similar.

6. Intersection

THEOREM 277. If the numbers 0 < m, < d,, 0 < my < dy respectively 0 <
m,. < d;., 0 <m’ < d} satisfy CCpp twice: d, > dg—myg, df > d.—m,, respectively
dy > dy —m'y, dy > d. —mj, then the following statements are equivalent:

/,d;., /,d/
Vu € S, fgz[r),dr,mf,df (u) mfng) my f(u) 7& @;
dp > dy —my, dy > dp —my, dp. > dy —my, dy > d. —m,..

. . odym’sd
If one of them is true, then there is the delay fglgd“mf’df N fpn ™

given by

(6.1) N u(é) U N u(€) < a(t) <

I and it is

feft—dy t—dr+my) eft—dl t—dl+m!]
< U  u©- U u©
EE[t*df,t*dfﬁ*’rnf] feft—d ,t*d}er}]

PROOF. We show the first statement. For an arbitrary u € S we can write:
Mg ydy my.dy.,m,d
3z € fzp (W) N fgh (u) =

< drebf, m u(é) <az(t) < U u(§) and

Eeft—dy t—dr+m,) Eelt—dy,t—ds+my)
and N u(€) < a(t) < U u(€)
ceft—d t—d.+m’] geft—d/} t—d,+m']

= N wos U w@and

CE[t—dy t—dr+my) €(t—dy,t—ds+my]
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and ﬂ u(§) < U u(§) and

geft—d. t—d,.+m!] EE€[t—d) t—d)+m)]

and m u(§) < U u(§) and

c€lt—dy t—drtmy] get—d) t—d}+m]

and N uw®< U u©

E€[t—d] t—d!.+m!] Eeft—ds,t—dy+my]
< dy > dy —my,dy > d, —m, and d;. > d; —m's,d} > d, — m;. and
and d, > d}y —m, dy > d, —m, and d;. > dy —my, df > d, —m;

= d, > dy —mly, dy > d —m, and d;. > dy —my, dy > d;. —my,
where we have taken into account Theorem 266 and the hypothesis.
The second statement of the theorem is obvious, but we can make the following

reasoning too. We fix arbitrarily ¢ € R,u € S and assign to N u(§),
EElt—dr,t—dr+my)
u(§), N u(§), U u(€) all possible values
E€ft—ds,t—dy+my] Eeft—d] t—d!.+m!] EE[t—dl t—d+m]

from 0,0,0,0 to 1,1,1,1 following seven situations. In each of them, the values

’ ,d/, ’ ,d/ . .
z(t),x € fggd”mf’df (w) N fup ™% (u) and the solutions z(t) of (6.1) coin-
cide.

m!.,d! m’f,d’f

REMARK 114. The delay fggd“mf’df Nfgp "~ is bounded, for example

7 7 7 7 " " " 1
My, dr,my,dy My, dy,mi,dy My, dr,my,dy o m, ,d, ,mg,dy
D Nfeb C fsp , but it is not of the form fg], .

B
THEOREM 278. If f is a bounded delay and g : S — P*(S) is an arbitrary
system, such that Yu € S, f(u) Ng(u) # O, then fNg is a bounded delay.

Proor. Let be 0 < m, < d,, 0 < my < dy such that CCpgp be fulfilled

My, dr,my,dyf

and suppose that f C fg] . By hypothesis, f N g is a delay and, because
fNg C f, we have obtained that f N g is bounded. O

COROLLARY 6. The intersection of the bounded delays is a bounded delay.

7. Union

THEOREM 279. Give the numbers 0 < m, < dr, 0 < my < df,0 < m). <
dy, 0 < mly < d} such that CCpp is fulfilled twice. Then there is the delay

ggd“mf’df U fggd”mf’df and it is given by the system
(7.1) ARIGE N w®<a)<
feft—dy t—dr+my) geft—dl t—dl +m!]
< U u(§) U U u(g).
E€ft—dy,t—ds+my] §E[t—d; t—d+m/]

PrOOF. Let t € R,u € S be arbitrary and fixed. We assign to the numbers

u(§), U u(§), N u(§) U u(§)

feft—dy t—dr+my] Eeft—dy t—ds+my] feft—d. t—dl +m!] 7 EE€[t—d) t—d+m)]

all possible values from 0,0,0,0 to 1,1,1,1. As a result we obtain nine situations.
) ) ) ’ 7diﬂ7 ’ 7d/

In each situation, the values z(t), = € fglgd“mf’df (W) U fpp ™% (u) and the

solutions z(t) of (7.1) coincide. O
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Jdmyd
REMARK 115. The delay fm“ rmyds Ufm =M s not a boundedness prop-

// 1" 11 17 1" " 11
d ,m.d L, - . m,.,d,. m.,d,
erty f HOT T but it s bounded. A possibility of choosing fg” " such

17 i

"
My ydyr,my,d ml.d.,m',d m,. ,d,. me,d, . X
that fg], dromg oy Ufgp 7 Cfgp T is the following one:

d, =d; =
Indeed, Yt € R, we have then
t—d,t] Dt—dr,t —d, +m,), [t —d,t] D[t —ds,t —ds +myg],
[t—dt] D[t —d,t—d.+m] [t —dt] D[t —djt—dp+ml]
thus Vt € R,VYu € S we infer that

N w@) < N w- N w®) <)<

§€ft—d,t] §€[t—dy t—dr+m,] §E[t—d) t—dj+m]]
< U u(¢) U U w@ < |J w®.
Eet—ds,t—dp+my] g€t—d} t—d}+m/] £et—d,t]
THEOREM 280. The union of the bounded delays s a bounded delay too.

m, = m; = max{d,,dy} e,

r

My dpymy,dy

Proor. From f C fgp , g C fB we have that fUg C

d/ d, 1" d 1 d//

Tesdrmysds fm” Pl o fap rmy 7. On the other hand we have sup-
posed that the consistency conditions are fulfilled for both delays fmr’dr’mf 47 and
dy.,m',d .

;”D romip . The parameters mr,dr,mf,d ¢ may be chosen like in the previous
remark. O

8. Determinism

THEOREM 281. Let be 0 < m, < d,, 0 < my < dy such that CCpp s true.

The followmg statements are equivalent:
) fmr, g, dy

is deterministic;
b) the upper bounds and the lower bounds of the transport delays coincide
dTde—mf, df:d,«—mT;
¢) the inertial delays are null
my =my = 0;
d) the boundedness property degenerates in a time translation

Jd > Oqulﬁydmmf’df — Id'

PROOF. a) = b) The hypothesis states that Yu € S, fm”d”mf df( ) has
exactly one element:

(8.1) Yu € S, N u(€) = U u(€).
Eelt—dy t—dr+m,) E€ft—dy,t—ds+my]
We assign to u the values X[y o): X(—o0,0) an1d we obtain

(82) m X[0,00) (5) = Xl[d,,o0) (t)7

Ce[t—dr t—dr+my)
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(83) U X[0,00) (g) = X[df—mf,oo) (t)v

§E[t—df,t—df+mf]

(84) m X(—o0,0) (5) = X(—oo,dr—mr)(t)7

Eeft—dy t—dr+m,]

(8.5) U X(=00,0)(§) = X(—o0,d;) (t)-
E€ft—dy,t—ds+my]

The relation (8.1) implies the equality of the functions from (8.2) and (8.3) and of
the functions from (8.4) and (8.5). This indicates the fulfillment of b).

b) = ¢) We add the two relations term by term and we get m, + my = 0,
whence c) is true.

c) = d) By hypothesis ¢) and from CCpp, we infer d, > dy, df > d,, i.e.
d, = dy = d and (1.1) becomes

u(t—d) <z(t) <u(t—d).

In other words, fyi"%(u) =uo7? = I (u).

d) = a) Obv1ous since Iy is deterministic. O

My, dyp,myg,dy

COROLLARY 7. Any bounded delay f having the property that f C fgz], ,

while fm“d“mf’d satisfies one of the conditions a),...,d) of Theorem 281 is deter-
ministic and coincides with 14, where we have put d = d, = dy.

9. Time invariance

My, drymyp,dy

THEOREM 282. The system fg/, 18 time invariant.

PROOF. Because Vd € R,Vu € S,Vz € fm“d“mf 47 (1) we have

N (wor?)(¢) = N wé —d) = N u(é) =

¢eft—dy t—dr+m.] ¢eft—dy t—dr+m.] ¢+det—dy t—dr+my)
= N u(€) <zt —d) < U u(§) =
¢eft—d—d, t—d—d,+m,] ¢e[t—d—dys,t—d—dg+my)
= U u(€) = U u(§ —d) = U (wor?)(©),
E+deft—dy,t—dy+my] Eeft—dy t—ds+my] eft—dy t—ds+my]

we infer that
{zworta e frp™ " W)} € frp™ " (wor).
O
REMARK 116. In general, the bounded delays are not time invariant. A coun-

terexample is represented by the delay f C f}BZ 12 defined by
)13%,1,2 (u)7 u 7& X[0,00)
Yu € S, f(u) = '
X[1,00)1 ¥ = X][0,00)
for which we note that X[y ) € f1 21,2 X , thus f C fl’z’l’2 indeed. We have
[1,00) [0,00) BD
FX0,00) © T1) = F(X(1,00) = {2]X[3,00) (1) < (1) < X[2,00) (1)}

{zo7'|z € f(X{0,00))} = X[2,00)"
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10. Non-anticipation

THEOREM 283. For any numbers 0 < m, <d,,0 <my < dy such that CCpp
be fulfilled, fglgd“mf’df 18 non-anticipatory in the sense of Definition 63 and of
Definition 65, items v),...,ix).

PROOF. a) We prove the non-anticipation in the sense of Definition 63. We

must show that Yu € S,V € fg[)’d“mf’df (u), we have:
a.1) x is constant
or

a.2) u,x are variable and
min{t|u(t — 0) # u(t)} < min{t|z(t — 0) # x(¢)}.
If u(—00 +0) = 0, there is some d € R with u < x4 ) such that we get
l‘(t) < U ’U’(E) < U X[d,00) (E) = X[derffmf,oo) (t)
Eeft—dy,t—dy+my] Eeft—dy,t—dy+my]

If u = 0, we have that z = 0 and a.1) is fulfilled. If u # 0, either x = 0 and a.1) is
fulfilled, or x # 0 and we can choose d such that

min{tlu(t —0) #u(t)} =d < d+dy —my < min{t|z(t —0) # x(t)}

be true, showing the fulfillment of a.2). The situation when u(—oco +0) = 1 is
similar.

b) We show the non-anticipation in the sense of Definition 65 item ix): 3d, 3d’,
0<d<d and

vVt e R,Vu e U,Vv € Uau\[t—d’,t—d] = V|[t—d’ t—d] =
My dypymy,dy My dypymyg,dy
= {=z(t)|z € fpp (W)} ={v®ly € f5p (v)}-
Indeed, let us take d = 0,d’" = max{d,,ds} and t € R arbitrary. Because
t—d. | D[t—d,t—dr+m|, [t —d t] D[t —dst—ds+mgl,

we infer that
Yu € U, Vv € U7u|[t—d/,t—d] = V|[t—d’ t—d] —

= N u(§) = N v(§)
eclt—dy,t—dr+m.] c€ft—dy t—dr+m,]
and
U u(€) = U v (),
§€[t—df,t—df+mf] §€[t—df,t—df+mf]
thus

{e@®z € fap™™ Y (W)} = {y@t)ly € fap™ ™Y (0)}.
O

THEOREM 284. If f C fglgd“"”’df is a bounded delay, then f is also non-
anticipatory in the sense of Definition 63.

Proor. This fact follows from Theorem 172. O
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REMARK 117. Sometimes the bounded delays are anticipatory in the senses
of this concept other than Definition 63 and the delay from Remark 116 gives a
counterezample for the non-anticipation in the sense of Definition 65, v). For the

inputs Xo,00) and X[0,3) We have X[0,00) | (—00,2] = X[0,3)|(—00,2]5 but
{2)(—o0,211T € F(X[0,00))} = X[1,00)1(=00,2] 7 1YI(—0021X[2,0)(8) S Y(t) < Xp15)(D)} =
= {Y|(~c0,2V € f(X[0,3))}-

11. Fixed delays and inertial delays

COROLLARY 8. (of Theorem 281) The deterministic bounded delays are given
by the equation

(11.1) x(t) = u(t — d),

where d > 0; the non-deterministic bounded delays consist in the system (1.1),
where m, +my > 0.

DEFINITION 112. For u,x € S and d > 0, the delay (11.1) is called the fixed
delay (condition, property, model). Other acceptable term is that of pure, ideal
or non-inertial delay.

A delay different from the fixed delay is called inertial.

REMARK 118. For the fized and the pure delays, the informal Definitions 101,
102 coincide.

In Definition 112 the inertia was defined to be the property of the delays of
being not ideal. In particular, the non-deterministic delays, for example the bounded
delays where m, +my > 0, are inertial.

A special case of inclusion in Theorem 270, a) consists in the situation when
the left bounded delay is deterministic. Let d € [d; —my, dy] N [d}y —m'y, d}] (item
b) of that theorem states d € [d; — my,d}] N [d}; —m/;,d;] and we can prove that
[, —mi., d}]N[d}y —m', dy] = [d, —mi., d ]N[d} —m;, d}]); then from the statements

t—d, < t—d<t—d.+ml,
/ !/ !
t—d; < t—d<t—d;+m},
N u(€) < u(t—d) < U u(€)
feft—d. t—dl +m!] EE[t—d t—d+m)]

m!.,d. m/.d, .
we conclude that Ig C fg, " "7, indeed.

We give now some properties of the fixed delays.

The delay 14 has race-free initial states, a bounded initial time and its initial
state function ¢y : S — B is defined as: Yu € S, ¢pg(u) = u(—o0 4+ 0), Corollary 5.
The delay 14 is self-dual, Theorem 274. The inverse of I is I_4 that, in general, is
a delay but not a bounded delay (it is bounded only if d = 0). The serial connection
of the fixed delays is a fized delay and it coincides with the composition of the
translations: for d > 0,d" > 0, we have d +d >0 and

Iyoly =1Igyoly=lata,

special case of Theorem 275. The delay 1 is time invariant (Theorem 282) and non-
anticipatory in the sense of Definition 63 and of Definition 65, v),...,ix) (Theorem
283).
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The delay 14 s also injective
Yu € S,Yv € S,u # v = Ig(u) # Iq(v),
Vu € S,Yv € S,u # v = Iy(u)NI;(v) =0

and surjective
Ve € S,Fu € S, Ij(u) =z,

FGteR,VAEB,Jue S Ij(u)(t) =\

12. Other definitions of the bounded delays
THEOREM 285. Let be the numbers d, > 0,dy > 0. For any u € S, we have

lim N wO= [ wd,

mr/drﬁe[tfdr,tferrmr] E€[t—drt)
lim U u(€) = U u(§).
mf/‘df
Selt—dy,t—dptmy] £€[t—dy,t)

PRrROOF. Prove the first relation. We fix arbitrarily ¢ € R, u € S. Then there is
an € > 0 with
For any m, € (d, — ¢,d,), we obtain u(t — d, +m,.) = u(t — 0), thus

N u(é) = N u(§) - u(t — 0) =

celt—dy,t—dr+m,] celt—dr t—dp4m,]
= N @ ) w= [ u®.
EE[t—dr, t—dr+my) E€t—dr+my,t) EE[t—dyr,t)
The second relation is proved similarly. O

REMARK 119. By using the previous result and the Convention from Remark
96, we take the limits in (1.1) as m, /" d, andmys /" ds. Then the double inequality
becomes’

(12.1) N w<z)< Y w©).
geft—dy,t) e(t—dy,t)
The system needs no consistency condition since
M w@<ut-d< [J wu©
Eeft—d,,t) e(t—dy,t)
is true for any d € (0, min{d,,dy}).
THEOREM 286. For any d, > 0,ds > 0, the inequality (12.1) defines a delay.

PROOF. The inequalities (12.1), by the previously discussed facts, define a
system. Suppose that 3\ € B, such that u € S.()\) i.e. Jty € R,y 00) = A

Because N wE)ty4dro0) = U w@)it;+ds,00) = A, we have that any
§€[ —dr, ) Sl —dy,)
x € S satisfying (12.1) belongs to S.(\). O

2This is just a possible interpretation of that Convention, when m,,m; and d,,d; are not
equal, but infinitely close.
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DEFINITION 113. Give the numbers d,. > 0,ds > 0. The delay

N w®<at< |J u©
EEt—dy,t) €ft—dy,t)

is called the boundedness property and is denoted by fg,}’fff . The parameters

d.,ds are the (rising, falling) upper bounds of the transport delays (trans-
mission delays for transitions).

DEFINITION 114. A delay f is called bounded if there are d, > 0,dy > 0 such

that f C forsi

REMARK 120. Another term for f C fBrl’;ff might be that of upper bounded,
lower unbounded delay.

In general, the pmpertzes of fBD,f

repeat the properties of fm“drvmf sy _ For

dyd drdy
exzample fgp’ C fBD,f is equivalent to dy < d;,d, < d.; the dual of fgp is
dy,dy d.,d] dryd drtd,.,dy+d
B and self-duality means d. = dg; fgp?’ o fgp’ = fgp ¢ and so on.

Of course, other variants of the concept of bounded delay may be defined, start-
ing with the properties

(12.2) N w@) <) < U u(€),
EE[t—dyr,t) eft—dy,t—ds+my]
(12.3) u(t —0) < z(t) < U u(f),
Eeft—dy t—dy+my]
(12.4) N wO<zt)< |J ),
Ee(t—dy t—dr+m,] e(t—dy,t)
(12.5) N w©<a®)<ut-0)

EE[t—d, t—dr+m,)

where, in principle, 0 < m, < d,,0 < my < dy are still true. The relation
(12.3) has followed by passing to the limit in (12.2) as d, \, 0. Similarly, (12.5)
has followed by passing to the limit in (12.4) as df \, 0. For example, (12.3) has
solutions iff it is of the form

ut—0)<zt) < |J ),

where dy > 0.






CHAPTER 12

Absolutely inertial delays

Let 6, > 0,65 > 0 be two parameters. The delay f is absolutely inertial if
Yu € U,Vz € f(u) when x switches from 0 to 1 it remains there more than 8, time
units and dually when x switches from 1 to 0 it remains there more than ¢y time
units. This type of inertia was called ’absolute’ because the property is independent
on the choice of u. In the chapter, several definitions for absolute inertial delays are
provided together with their related properties. A version of the absolute inertia is
indicated at the end of the chapter together with zenoness, representing, in some
sense, the absence of the absolute inertia.

1. The first definition of the absolutely inertial delays

THEOREM 287. Let be the numbers 6, > 0,6y > 0. When x € S, the following
statements are equivalent:

(L.1) w(t—0)-2(t) < () «(®),
EE[tt+6r)
wt—0)-z(t) < [ w(©);
eft,t+67]
(1.2) w(t—0)-a(t) < z{t-0)- [ =(),
EE[Lt+6r]
2t —-0)-z(t) < wx(t-0)- () =(;
et t+6y]
(1.3) 2(t—0)-2(t) = x(t—0)- () (),
EE[t t+6,]
w(t—0)-2(t) = wx(t—=0)- () (9
e(t,t+6¢]

vt € R,Vt' € R,
(14t < tandz(t—0)-z(t)=landz(t' —0)-2({t')=1) =t —t > 6,
t < tandz(t—0)-z(t)=1andz({t' —0)-z(t') =1) =t —t > &y;

(1.5) 2(t—0)-z(t) < xt-6;,-0)- [ =),
geft—671t)

2t —0)-2(t) < a(t-6-0- (] =&
EE[t—6,,t)
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Proor. (1.1) = (1.2) Both sides of the first inequality from (1.1) are multi-
plied by z(t — 0) to follow the first inequality from (1.2).

(1.2) = (1.1) From the first inequality of (1.2) we get the first inequality of
(1.1):

w(t=0)-a(®) <x(t=0)- () 2(9< () (9
£Et,t+6,] £Et,t+6,]
(1.1) = (1.3) In the following inequalities

wt—=0)-z(t) < [ =(§) <),

§E[t,t+64]

obtained from the first inequality (1.1), we multiply all the terms by z(¢ — 0) to get
the first inequality (1.3).
(1.3) = (1.1) The first inequality (1.3) implies the first inequality (1.1):

w(t—0)-x(t)=2t-0)- [\ =< [] ©.

EE[t,t+0r] €€t t+0r]
(1.1) = (1.4) Let t,t' be arbitrary, such that

t<t' andz(t—0)-z(t)=1and z(t' —0) - z(t') = 1.

(1.1) states that (| «(¢) =1 and N z(§) =1, thus [t,t + 6, N[t/, ¢ +
£E[t,t+6r] €[/t +6 ]
6f] = 0 wherefrom ¢ + 6, < t’. The conclusion is ¢ — ¢ > §,. The first implication
(1.4) was proved.
(1.4) = (1.1) Suppose that the first inequality of (1.1) is not true, i.e. there
is t € R with

x(t—0)-z(t)=1land [ (&) =0,
EEt,t+6,]
meaning the existence of ¢’ € (t,t + 6,], where x switches from 1 to 0

z(t' —0)-z(t') = 1.
We have t/ — ¢ < §,, contradiction with the first implication from (1.4).
(1.4) = (1.5) If the first inequality of (1.5) is not true, then there is t’ € R
such that
2t —0)-2(t)=landx( —6;—0)- () (&) =0.
e[t/ —5y,t")

This means that for any € > 0 there is some t € [t — ¢ —¢,t') with

x(t—0)-z(t) = 1.

The inequality t' — 65 — e < t, true for all € > 0, gives t' —¢ < §¢. Thus the second
implication (1.4) is not true.
(1.5) = (1.4) Let us take two numbers ¢, ¢, such that

t<t andz(t—0)-z(t) =1and z(t' —0)-z({t') =1,
implying
xz(t—06f—0)- m (&) =1 and x(t' — 6, —0) - m (&) =1.

EE[t—5y,1) EE[t! —=6,,t")
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fl 52 == 5f ﬁz 52 + IZC"?. £3

F1GURE 1. The interpretation of absolute inertia

In other words, there are €1 > 0 and €5 > 0 with the property
VEE [t =6 —er,t),x(§) =0,
VEe [t — 6, —ex,t'),2(§) = 1,
[t—6;—cr,t) N[t/ =& —ea,t') = 0.
The last empty intersection leads to the conclusion that
t<t — 6, —e2

is true, i.e. t' —t > 6, +e2 > 6, (the other possibility ¢’ < t—6y —¢; is false since in
t' —t < =65 — €1 the left-hand side is positive and the right-hand side is negative).
We have proved the first implication of (1.4). O

DEFINITION 115. The autonomous system ff{[’éf C S defined by any of the
equivalent properties (1.1),...,(1.5) is called the absolute inertia property. The
numbers 6,,6¢ are called the (rising, falling) inertial parameters. When 6, =

6 =0, fi}’é'f is called trivial otherwise we say that it is non-trivial.

REMARK 121. The absolute inertia is the property of the signals to keep their
value constant more than a given time interval after each switch. Thus they are
characterized by a certain slowness. This interpretation follows from Figure 1. We
note how the switch x(ts —0) - x(ta) = 1 in the (1.1) version assures that x will
remain 1 during a time interval of length t3 — to > 6, while in the (1.5) version it
assures that x has remained 0 for a time interval of length to —t1 > 6y. When t
runs over R, the two properties are equivalent.

Remark the way that any of (1.1),...,(1.5) degenerates in the trivial situation
6 =65 =0: fYY = S. Remark also the intermediary situations when one of

8, > 0,67 =0 and 6, = 0,67 > 0 is true and the inclusions fy;° C S are strict.

The set ff‘}’@f is not closed under the Boolean laws if 6, > 0 or 6y > 0. For

1,0 1,0
ezample, X(0,2), X[1,3) € a7, but Xpo,2) * X[1,3) = X[1,2) & far-
For any 6, > 0, 6 > 0 and = € S, there is some tg € R such that fort < tg

any of (1.1),...,(1.5) is fulfilled since x(t —0) - x(t) = x(t — 0) - x(t) = 0. This
property represents the consistency between the absolute inertia and the way the
signals were defined. It is somehow similar to the fact that at the bounded delays
we had Yu € S,Vx € f;?gd“mf’df (u), (=00 + 0) = u(—o0 + 0).

DEFINITION 116. The delay f is called absolutely inertial if there are 6, >

0,07 > 0 such that

Vu e S, f(u) C f57°0.

Sometimes we say that f satisfies the absolute inertia property ff,}"sf .
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THEOREM 288. Let f be some delay and 6, > 0,6y > 0, such that Yu €
S, f(u) N f57° £ 0. Then f defines the absolutely inertial delay f N f57°7 .

S, 865 -

b ¢ f shows that fN f 7" is a delay, while
f‘s”&f shows that the delay is absolutely inertial. O

Proor. The relationship f N f 7
sVl

DEFINITION 117. The delay f 0 f 4} b defined in the conditions of the previous
theorem is called the absolutely mertzal delay induced by f.

8r,

REMARK 122. Intuitively, we say that the absolutely inertial delay f expresses
a cause-effect relationship between an input and a family of inertial states, such
that for any u € S, the variations of the delayed signal x € f(u) cannot be faster
than the fulﬁllment of f§”6f

Because fAI =S5, each delay f is trivially absolutely inertial: f C fg’?

allows.

2. Order

!

THEOREM 289. Given the non-negative numbers &,,8,6.., s the following

statements are equivalent:
o) 13" 1
b)(S 25 and &5 > 68%.
Proor. In(1.1), N z() < [ =) istrueforallz € Siff [t,t+6,] D
EEt,t+6,] g€t t+6]
[t,t + 6], meaning that &, > &... Similarly for 6 > & O
REMARK 123. From the previous theorem and from the conjunction of the state-
ments f C fé“éf and fé“‘sf félr’yf we conclude that if the delay f has the property

6“6f , then it has also the property f §f, when 8, > 6, and 67 > 5'

On the other hand, let be the absolutely inertial delay f: 36, > 0, 16, >0,f C
5“5f . It is interesting the study of that property fi}’éf with

e

ii) for any fA’"I’(Sl with f C fj}’él we have fér"sf C fj}ﬁf

i.€. f{]’&f 1s the smallest absolute inertia property in the sense of the inclusion
satisfied by f.

COROLLARY 9. Ifg C fi}’§f is an absolutely inertial delay, then for any sub-
delay f C g, there are 6, > &, and oy > 6 such that f C f§”6f.
3. Duality
THEOREM 290. Let be 6, > 0,65 > 0. The dual of the system fi}’éf is fu7 "

ProOOF. For any u € S, we have

(Far’ ) (w) = (@ —0)-z) < () @©,2t-0)-2)< () =@} =

g€t t+6,] gElt,t+5/]

= {zle(t=0)-2(t) <[] «(€),2(t=0)-2(t) < 2(§)} =

et t+6,] EE[t,t+65)
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={aet—0)-zm) < [ 2©@.2E-0)-a()< () =(&}=ra"(

et t+6,] et t+65]

O

THEOREM 291. Suppose that f C fé“‘sf

frc fﬁf’ " is an absolutely inertial delay.

is an absolutely inertial delay. Then

PrOOF. From Theorem 261, f* is a delay. The inclusion f* C féf O follows

from Theorem 49 and also from the previous theorem. However, we can show this
fact directly:

Vu € S, f*(u) ={Z|z € f(u)} C {T|z € fér"sf} ={z|T € fé“‘sf} §f o,

THEOREM 292. The property fi}’§f is self-dual iff 6, = 6y.

PRrROOF. If is obvious.
Only if From fér’éf C ff‘fl’&r we infer (see Theorem 289) that 6, > 6,65 >
Oy O

4. Serial connection

THEOREM 293. Let be the delays f,g. The inclusion f C fi}’éf implies fog C

f{[’éf . In particular, the serial connection of the absolutely inertial delays with the

parameters 0,,65 is an absolutely inertial delay with the parameters 6,,0.

ProoFr. Obvious. O

5. Intersection

THEOREM 294. Let be the non-negative numbers 6r,6f,6;, 6'f. We have:

(5.1) 6r,6f ﬂf §f o 1r4n]ax{6r,§ ' }omax{éy, 6f}

PROOF. Let be g such that x(tg — 0) - 2(tp) = 1. If the inequalities

w(t=0)-z()< [ ()

EE[tt+6,]

xt—0)-zt)< (] ()
et t+6]

are both true, we infer

1= ) «2© [ =9= N =@

£€(to,to+6r] £€(to,to+61] £€(to,to+max{6,,6"}]
and, similarly, if ¢ is chosen such that z(t; — 0) - z(¢1) = 1 be true, the inequalities

2(t—0)-a(t) <
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being both fulfilled, then
1= N - z(§) = N z(§)

€[ty t1+6y] §€ftr,ta+6%] €ty ti+max{éy,6%}]

is true. We have proved the inclusion

5T,5f max{§,,6,.},max{6s,6%}
N Lo Al :
max{6,,6,},max{6s,6’ 6,8
On the other hand, from Theorem 289 we infer f,, { } (0585} C far,
max{6,,6.},max{6s,6’ 3 5;,5}
AT C fi7 7. Thus

max{&r,é;},max{éf,é’f} 8r\8 §L75’f
Al f N fA] .

O

THEOREM 295. Let f C f§“6f be an absolutely inertial delay and g : S —

P*(S) some system. IfVu € S, f(u)Ng(u) # 0, then fNg C ff""[’&f is an absolutely
inertial delay.

PrOOF. From Theorem 258 it follows that fNg is a delay and we have fNg C
fcfomt O

THEOREM 296. Let be the absolutely inertial delays f C f‘sr’éf,g C ff{[’éf and

suppose that Yu € S, f(u) N g(u) # 0. The delay f N g is absolutely inertial with
f NgcC fmax{ér,é 1 max{éf §f}

PROOF The intersection fNg is a delay satisfying fng C f C f§ % and fng C

LA 5T,5 57,6
g C fAIC From this we get that fNg C f§r’§f Nfa fmax{ bmax{y.87}
We have taken into account (5.1). D

THEOREM 297. For all 6, > 0,67 > 0 the intersection fyp N fi}’§f s a delay
and the following property of serial connection

5,68 6,87 8,16
(fup N fa7 e (fup O fa7 ") = fup N fai?!

is true, where 5;. > 0,6'f > 0.

PROOF. Let u € S be arbitrary. If X € B,u € S.()), then A € fup(u)Nfyy"!
and if w € S\ S, then fyp(u)N f§”6f SN fér’éf = 6T’§f # (). We have proved
that V6, > 0,Y6; > 0,Yu € S, fup(u) N f57°7 # 0. Thus for any &, > 0,6 > 0,

fupnf i}’§f is a function S — P*(S5) that is a delay because it is included in fyp.
We have

(fop N £ o (fup fii’59'>><u> - U Gonn )@ =

/6/

€(fupnfa; )(u)
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U fUD(JI),UG SC(O)

vy

87.,6%,
€S (0)Nf,; 7

5rib5 | 50,85 U fup(w),u € S.(1)
I 7 g/ =
Al : ‘,f ple) = Jii res.()N 14, !

wefup(nsa, ! U  fupl@),ueS\S.

Yy

Sy
zesnf, f

U Sc(0),u € Sc(0)
é/ 6/
xESc(O)ﬁfATI’ f
Se(0),u € Sc(0)
Se(1),u € Se(1 ’
=0 Uéwl()u W _ 0l S.(1),ue Se(1) =
€S (NF,T T SucS\S,
U SwuesS\S. ’
zefju °r

= (fup N F57") ().
O

THEOREM 298. Let be the delays f,g and the numbers 6, > 0,65 > 0, such
that Yu € S, f(u) N f‘s“éf # 0. The formula

(FOftyog=(fog)n iy

18 true.

PrOOF. For any u € S, we get

(F N 575 0 9)(w) = {ylFa,y € f(z) and y € f37°7 and z € g(u)} =

=((fog)N [y (w).

6. Union
THEOREM 299. For any numbers 6, > 0,65 > 0,6, > 0, (5} > 0, we have

(61) §T’6f U f 6] _ ;nlln{érvé »1min{dy, &% }

PRrROOF. Similar with the proof of Theorem 294. O

THEOREM 300. Given the absolutely inertial delays f C f‘S 0 and g C f‘S 01 ,

the delay f U g is absolutely inertial with fUg C fmm{ér’é }’mm{&f o }

PROOF. The delay fU g is included in f‘sr’&f U ff{[’éf and we take into account
(6.1). 0
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7. Time invariance

THEOREM 301. For any 6, > 0,6y > 0 the system fi}"sf 1s time tnvariant.
PrOOF. Let u € S and d € R be arbitrary. We have that (1.1) and
2(t+d—0) - zt+d) < [ zE+d),

£E[t t+6,]
2t+d-0)-zt+d) < (| z(€+d
E€[tt+65]
are equivalent (in the sense that they have the same solutions), wherefrom

A (worh) = fiy* = {alro ™l € fu7"} = {worlz € £}

O
THEOREM 302. Let f be some time invariant delay and suppose that the prop-

erty Yu € S, f(u) N f‘sr’&f # 0 is fulfilled. Then the induced delay f N fi}"sf is time
tnvariant.

PrOOF. Let w € S and d € R be arbitrary. From the previous theorem we
have

(F O a7 uwor®) = fluorh) N f47" ={woriz € fw)} n{worie € f37°} =

= {zorlz € fu) N £37°} = {z oz € (f N £37°) (W),

The same statement follows from the fact that f N fé“éf is a subdelay of f,
that is time invariant as intersection of time invariant systems (Theorem 168). O

8. Examples of absolutely inertial delays

THEOREM 303. Idﬁf(s”éf,d € R is an absolutely inertial delay for 6, = 65 =0
only.

PROOF. Suppose against all reason that there is §, > 0 with Yu € S, I;(u) N
5r75j # (. The input u = X[0,6)> Where 0 < 6 < 6, satisfies the property

5,65

Id( ) 0 [0,6) © T ¢ f ’
contradiction. The situation is similar if we suppose that there is 6 > 0 such that

I;n ff‘}’&f is an absolutely inertial delay. O

EXAMPLE 104. The two deterministic delays from Ezxample 98 as well as the
following non-deterministic delays

flu) = {1}u {X[d,oo)'d e R}, if ue Se(1)
L {0} U{X(—,aq)ld € R}, otherwise ’

f( ) _ {0} U {X(—oo,d)|d € R}7 Zf u € SC(O)
YT Do {X{a,0)|d € R}, otherwise

satisfy ff{]’éf for all 6, > 0,65 > 0.
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ﬂu(”&] mtr mtrtz
Lelr—d,t—d +m]

d d+7 d+m+r+s

;

mte

FIGURE 2. Deterministic delay, Theorem 304 a)

THEOREM 304. Let be 0 <m < d.
a) The deterministic delay (from Example 101)

x(t) = N u©
Eet—d,t—d+m)]

0,m

satisfies x € f ; and for any 0,,6f such that 6, >0 or 65 > m, there is an u € S
with © ¢ fg}"sf, In other words, 0,m are the largest values that 6,,0; can take
making Yu € S,z € {577 true.

b) The delay (from Example 101)

x(t) = U
feft—d,t—d+m]

m,0 ,

satisfies x € fup ; for any 6,,65 with one of 6, > m, 6y > 0 true, there is an
input u € S such that x ¢ fi}’6f, meaning that m,0 are the largest values of 6,,6
making Yu € S,z € {577 true.

PROOF. a) In the second property (1.4) the hypothesis states
t'>tand x(t—0)-z(t) =1and z(t' —0) - z(t') = 1,
wherefrom we infer (see Theorem 22)

u(t—d—0)- m w(§) - u(t—d+m) =1,
ceft—d,t—d+m)
u(t' —d—0)- m u(§) =1,
cEt —d,t —d+m]
ie. t—d+m =1t —d— e for some € > 0, and, eventually ¢’ —t > m.

Suppose that there are ¢, > 0 and 6¢ > 0 such that = € ff{]’&f. We take some
€ € (0,6;) and u = X[g 4 for which we have

J}(t) = ﬂ X[0,m+e) (E) = X[d,d+¢) (t)

fet—d,t—d+m]

Thus x ¢ ff{]’(sf , contradiction. Similarly, the assumption that there are 6, > 0
and 6y > m with z € ff{"[’&f brings us to the following counterexample. Let be
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]
4 £
Jusy|  °
tet—d,t—d +m]
d-m d+s=
L —
mte

FIGURE 3. Deterministic delay, Theorem 304 b)

U = X(_oo,0)U[e,00)» Where € € (0,67 —m). We have

J}(t) = m X(—o0,0)U]e,00) (E) = X(—o0,d—m)U[d+e,00) (t)
¢€[t—d,t—d+m)]

Because d +¢ — (d —m) = e+ m < 6y, we infer the contradiction = ¢ ff‘}’éf. O

THEOREM 305. The delay fup N fi}’é‘f 18 a time invariant absolutely inertial
delay included in ff{[’éf for any 6, > 0,0¢ > 0; fupN ff{]’éf is self-dual iff 6, = 0.

PROOF. The intersection fyp N ff{l’éf is a delay (Theorem 297) and the fact

that it is included in ff"‘]’éf is clear.

In order to prove the time invariance, we note that fyp is time invariant (The-
orem 252) and fi}’é'f is itself time invariant (Theorem 301). Thus their intersection
is time invariant (Theorem 168).

Prove now the self-duality statement. In order to show the necessity, we can
write

(fup N £ ) = fop N 3™ = fop N = fup 0 Fap®
and suppose against all reason that 6, = ¢y is false, for example, 6, < é7. Then,
for u =0, xj0,6,) € (fup N fi}’§'f)(u) and Xo.5,) ¢ (fup N le’ér)(u), contradiction
showing that 6, > & is necessary. Similarly, we have 6, < ¢;. Thus the equality
0, = Oy is necessary. Obviously this equality is sufficient in order that fyp N f{l’éf
be self-dual. 0

9. Other definitions of absolute inertia

REMARK 124. Another definition of absolute inertia is given by the replacement
of inequalities (1.1) with the inequalities

(9.1) w(t=0)-zt)< () =
et t+6,)
wWi-0)30< () HO
Eeft,t+65)
where 6, > 0,6y > 0 again, autonomous system that is denoted by fi}’,éf. When

0, = 0,0y = 0 the previous inequalities take the trivial form, like at j}’éf. The
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study of ff‘}’,&f is similar to that of ff{[’éf. The difference is that in (1.4) t' —t >
8p,t' —t > 65 are replaced by t' —t > 6,,t' —t > 6.

There is still the possibility of combining the first inequality from (1.1) with
the second inequality from (9.1), or the first inequality from (9.1) with the second
inequality from (1.1).

EXAMPLE 105. The system defined by the inequalities (Theorem 322 will ana-
lyze a similar system)

(9.2) xt—0)-2t)= () (- u(®),
EE[t—6s,1)
(9-3) et -0)-z()= () =) ul),

§eft—6r,1)
0r > 0,05 > 0, is a deterministic time invariant delay. Its solution satisfies x €

G071t is self-dual iff 5, = 6.

PROOF. We can suppose that a solution of (9.2), (9.3) always exists. We show
that the system is a delay and let u € S;(1). Then there is ty € R such that
U|[t;,00) = 1 and VE > t5 (9.2), (9.3) take the form

(949 WE-0)-a) = () 7@,

Eelt—5y,t)

(9.5) z(t—0)-z(t) =0.
If N x(§) =1, then z(ty) = 1. In addition we have |, o) = 1.
Eelty—b5.ty)
For

x(§) = 0, there are two possibilities:

D)

E€[ty—b55ty)

a) x(ty —0) = 0. Because 3¢ € [ty — 6y, ty),(§) = 1, we put &; = sup{{|¢ €
[ty —0p.ts),2(§) =1} and we have that 2|i¢, 15, 00) = 1;

b) J:(tf —0) = 1. Then T|[ty,00) = 1.

Similarly, we can show that if u € S.(0), then any solution z of (9.2), (9.3)
belongs to S.(0).

The determinism of the delay is proved like this. There is t; € R such that
T|(—oo,ty) = (=00 + 0),U|(—s0,ty) = u(—00 + 0). Hence we have x(—oc + 0) =
u(—00+0). The assumption of existence of t; > o and of two distinct solutions z,y
of (9.2), (9.3) satisfying @|(—co.t,) = Y|(—oo,t)s T(t1) # y(t1) gives a contradiction.

The time invariance follows from the fact that if = is the solution of the system,
then for any d € R we get that x o 7¢ is the solution of the system

yt—=0)-yt)= [ v ult—d),
ge[t_‘sfvt)

y(t—0)-yt) = ﬂ y(§) - u(t —d).
EE€[t—6,,1)

The absolute inertia is a consequence of the remark that

e(t=0)-2()= () 2@ uwt)<s [) 2(),

EE[t—6y,t) EE[t—5y,t)
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wt=0)-at)= [ 2@ -uB< () 2
EE[t—6,,1) EE[t—6,,1)
and these two inequalities are a version of (1.5).
The self-duality implies the equivalence between (9.2), (9.3) and the following
system

IN

w(t=0)-2()= [ 2(&)-ult),

£€[t—§r,t)
-0 T= () ()T
Ee(t—by,t)
We can prove that this occurs iff 8, = 6. O

10. Zeno delays

DEFINITION 118. If the system f : S — P*(S) satisfies one of the properties
i)Ve >0,Ft e R, I e R,Fu e S,z € f(u),

z(t—0)-2z(t)=1and z(t' —=0)-z(t') =1 and 0 <t —t <,
i) Ve > 0,Ft € R, 3t € R, Fu € S,z € f(u),
2(t—0)-z(t)=1andz(t' —0)-z(t') =1 and 0 < t' —t < ¢,
then it is called Zeno.

THEOREM 306. If the delay f is Zeno, then any delay g O f is Zeno. If f is
not Zeno, then all its subdelays g C f are not Zeno.

REMARK 125. Zenoness (named so after the name of Zeno of Elea 4952-435¢
B.C.) is considered a non-natural property for the delay f, in the sense that the
existence of the inputs that produce pulses of the states with an arbitrarily short
length does not correspond to the behavior of the devices from the digital electrical
engineering, that are characterized by a certain slowness. For example the delay I
s Zeno.

In general, in literature the concept of Zenoness is slightly differently presented,
mainly due to the fact that the authors do not use the same notion of signal like
us. Let us quote Karl Henrik Johansson' saying 'Zeno hybrid automata accept
executions® with infinitely many discrete transitions within a finite time interval.
Real physical systems are, of course, not Zeno, but hybrid automata modeling real
systems may be Zeno. The Zeno phenomena is often due to a too high level of
abstraction’. Other authors deal with the Zeno signals. We reproduce here the
opinion on the Zeno conditions expressed by Edward A. Lee*: the model “illustrates
a Zeno condition, where an infinite number of events occur before ty and hence the
clock actor is unable to ever produce its output at time to’. ’Eventually, erecution
stops advancing time’.

In modeling, we prefer to use the delays that are not Zeno.

THEOREM 307. For the delay f the following statements are equivalent:

a) f is not Zeno;

b) there are 6, >0 and 65 > 0 such that f C fi}’,éf.

1Hylorid systems, EECS291E, UC Berkeley, Spring 2000, Lecture #4, Zeno Hybrid Automata
2L.e. have states x € f(u).
3 Advanced Topics in Systems Theory, EECS290N, UC Berkeley, Fall 2004.
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PRrOOF. The negation of the zenoness property from Definition 118 may be
written under the form: the following statements are true:
i) 36, > 0,vt € R,Vt' € R,Vu € S,Vz € f(u),
(t<t andz(t—0)-z(t)=landz(t' —0)-z2(t')=1) =t —t >6,;
ii) 36y > 0,Vt € R,Vt' € R,Vu € S,Vz € f(u),
(t <t andx(t—0)-z(t) =1land z(t' = 0)-x(t') = 1) =t/ —t > &;

and this is equivalent to f C ff‘}’,éf (see also (1.4)). O







CHAPTER 13

Relatively inertial delays

Relative inertia is the property of the states of having their speed of variation
limited by a function depending on the input, while the relatively inertial delays
are these delays the states of which are relatively inertial. Even if the concept has
close connections with the published literature, it has a severe shortcoming, that
we have called the paradox of inertia: the serial connection of two relatively inertial
delays is not a relatively inertial delay. A counterexample is given.

Some major properties of these delays are presented with examples and the
relationship with the absolute inertia and zenoness is analyzed.

1. Relative inertia

THEOREM 308. Let be the numbers 0 < p, < 6, 0 < py < 0¢. The following
statements are equivalent:

(L1) w(-0)-alt) < N we.

E€(t—6,,t—64p,.]

ARIGE

EE[t—b5,t—b5+py]

z(t —0) - z(t)

IN

(1.2) ot —0)-z(t) < w(t—0)- N u(§),

EE[t—ér )t_§r+ur]

e(t—0)-2(t) < a(t—0)- N u(f),

EE[t—b7,t—85+py]

where u,x € S.

PROOF. Similar to (1.1) <= (1.2) part of the proof from Theorem 287. O

DEFINITION 119. The system fg}"sr’#f’éf : S — P*(S) defined by any of
the properties (1.1), (1.2) is called the relative inertia property. The numbers
fys Ors i, 05 are the (rising, falling) inertial parameters.

REMARK 126. The attribute ’‘relative’ given to inertia refers to the fact that

Oropiy,6
the property fg} H12%8 depends on u, as opposed to the former case of ‘absolute’

) Ty

inertia f 47"
Orslbg0f . .

1’;[ TR0 s a system, indeed. For example Yu € S, the constant functions

Brobip by
0,1 €S belong to fry" """ (w).

The consistency between the relative inertia property and the initial values
u(—o0+0), x(—o0+0) is given by the fact that there is ty such that for any t < to,

, when the system was autonomous.

205
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we have x(t —0) - x(t) = x(t — 0) - 2(t) = 0. Thus the relative inertia property is
trivially fulfilled on some set t € (—o0,tp).

On the other hand, for any A\ € B, we have that fp} T’“f’éf( A) = {0,1} U
e X[d,00)|d € R}, where we have identified again the Boolean constant with the
constant signal. This shows that when the input is constant the relatively inertial
states are monotonous.

Remark what the relative inertia property becomes in the ’trivial’ case when
op =0p = pp = py =0

(1.3) 2(t—0) - z(t) < u(t),

(1.4) z(t —0) - 2(t) < u(?).

This is not trivial at all. The inequalities (1.3), (1.4) describe the situation when
x may switch only if it becomes equal to u. A situation more general than (1.3),
(1.4), when 6, > 0, 65 >0, p, = pg =0, was called by us in previous works the
property of constancy and the delays that fulfill it were called constant.

There is a variant of f”“ T’“f’éf, similar to the fgrbc,lf and fAI/ variants of
ggd“mf 41 and f‘sr’éf, i.e. we can replace (1.1) by
w(t—0)-z(t) <[] wu),
E€[t—6,,1)
et-0)-z() < () @),
EE[t—6y,t)

where 6, > 0,6y > 0. This property is denoted by fRI, !

to fém&f )

and is analyzed similarly

2. What other authors say

REMARK 127. Again we interpret the relative inertia condition by quoting some
informal definitions.

[15], [16] (see Definition 108, a)) state: the inertial delays 'model the fact
that the practical circuits will not respond’ at the output ’to two transitions’ on
the input "which are very close together’. In case that two transitions of u are
wery close together’, i.e. if u has a l-pulse of length < u,, then the function

N u(€) is null on some set, where the function x(t —0) - x(t) is null
EE[tftsr,tf(er,»;Lr]
also: there are t1 < to < t3 < ta such that t3 —to < p,. and

u(t) = w(t) - X(oo,t1) (1) © Xita 1) (1) © U(t) * X[t4,00) (£)s
m u(§) = m u(§) 'X(—oo,t1+6r—pr)u[t4+6r,oo)(t)

EE[t—6rt—8,+11,] €Et—8, t—6rtp1,]
imply
VE € [tl + 67' - M7-7t4 + 6?)7x(£ - 0) x(i) =0.
The situation is similar if u has a 0-pulse of length < py.

In this context we rewrite a quotation from [14] (see Definition 108 b)): ‘pulses
shorter than or equal to the delay magnitude are not transmitted’ in the following
manner: ’'pulses shorter than or equal to p, (respectively to p f ) are not transmitted
and pulses strictly longer than p,. (respectively than py) may be transmitted’.
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On the other hand, Definition 104, it) and Definition 105, i) look, keeping
. . Sroths,6 .

the notations from the latter, like f;}’ Ra28 with 8, = 8f = dmin, by = py =
dmin — 0, i.e. like fRI, 7. This point of view agrees with the one from [15], [16] see
C’onventwn from Remark 96 stating that: ’the transmission delay for transitions
is the same as the threshold for cancellation’. Here 6,07 act as ‘transmission
delays for transitions’, even if they are rather ’minimum transmission delays for
transitions” and p,., puy act as ‘thresholds true for cancellation’. "The same as’ means
that the two quantities differ by an infinitesimal.

Furthermore, let us recall [1] (see Remark 101) the quotation: ’changes should

persist for at least l; time units but propagated after lo,ly > l; time’. In our

formalism represented by f#” oty T if we accept the self-duality, we have: 1, =

Wy = g, la = 6 = b5 and 'changes should persist for strictly more than ly time
units but propagated after more than or equal to lo,ly > 11 time’.

3. The relationship between relative inertia and absolute inertia

THEOREM 309. Let 0 < p, < 65, 0 < pyp < by be arbitrary. If b5 > 6, — p,,
8, > 65 — g, then Yu € S, flay 0% (w) € o0t T (),

PROOF. Let t,t' € R, u € S and z € f“” T’“f’§f( ) be arbitrary, such that
t<t' andz(t—0)-z(t)=1and z(t' —0) - z(t') = 1.

N u(é) = N u(€) =

EE€[t—brt =641, EE[t/ =65, =65 +py]
= [t =6t =6+ ] O [t =658 =65 +py] =10
==t =6+ p, <t =bport' =6y +pu; <t—26,
=t =t > =6+ port —t <85 —py =6,
=t —t>6f — 6+ p,
(The inequality t' —t < 65 — p ¢ — 0r is false, because the left-hand side is strictly

positive and the right-hand side is non-positive).
The proof is similar for the second inequality. O

We get

REMARK 128. The inequalities 65 > 6, — p,., 6, > 65 — py from the hypothesis
of Theorem 309 are similar to CCpp.

4. Relatively inertial delays

DEFINITION 120. Let be the numbers 0 < p, < 6,, 0 < py < 0¢ and the delay
f. If [ satisfies the condition

Vu € S, f(u) C fu" "% (u),

then it is called the relatively inertial delay. We use to say that f satisfies the
KOt 6f

of

relative inertia property fr;

THEOREM 310. Let f be a delay and 0 < p,, < 6,,0 < py < Oy with the property
that Yu € S, f(u) N f”“ T’#”&f( ) # 0. Then f defines the relatively inertial delay
fmfur) Tvﬂf7§
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PROOF. Yu € S, f(u) N fry T’“f’éf( ) 7é 0 and f N fry bt 0f f show that

5O0r, 75 I T‘) 75 7«757‘7 36' .
fn f”r #5745 a delay and from f N fRy " "0 < Ry M we infer that the

delay is relatively inertial. O

DErINITION 121. The delay f N f#” Brotis 84 defined in the conditions of the
previous theorem is called the relatively inertial delay induced by f.

REMARK 129. The relatively inertial delays are the widest accepted inertial
models and, at the same time, the most controversial. The controversies are gen-
erated by the fact that, in the non-formalized theories where they are used, it is not
provable that the serial connection of two relatively inertial delays is a relatively
inertial delay, a mormal closure property. We shall refer to this important aspect
later.

Let be 0 < p,. < 6, and 0 < pyp < 6y. The fact that the delay f is relatively

inertial f C f”“ Ot and that 6f = Op — fiyy 6p = O — iy, tmplies by Theorem
309, that f is absolutely inertial f C f§f Ortptrsbr=dstiy Moreover, if f' is an
arbztmry delay with Yu € S, f'(u) N f”” T’“f’§f( ) # 0, then the induced delay

fn f”” R0 s g subdelay of the induced delay f'N f§f Ottty =0sthy

EXAMPLE 106. The extreme situations of relatively inertial delays fﬁf”“ Orottg 05

induced by the delay f are created by f = fup and by f = 14 respectively, that define
relatively inertial delays for all p,, 6y, piy,0f such that 0 < p, < 6., 0 < py < 6y,
and for p, = py =0, 6, = 65 = d respectively.

EXAMPLE 107. The two delays from Ezxample 98 satisfy the relative inertia
property f”” Brotty b1 for all 0 < p, < 60,0 < puyp <05

EXAMPLE 108. Let be 0 < m < d. The delay x(t) = N w(§) satisfies

E€t—d,t—d+m)]
the relative inertia property under the form

2(t—0)-z(t) < N w®,

Eet—d,t—d+m)]

z(t—=0)-z(t) < ult—d+m).

Dually, the delay x(t) = U u(§) is relatively inertial also:
¢eft—d,t—d+m)]

z(t—0)-z(t) < ult—d+m),
z(t—0) - z(t) ﬂ u(€).

Eet—d,t—d+m)]

IN

These facts follow from Theorem 22.

5. Order

THEOREM 311. Given the numbers 0 < u, < 6, 0 < py < 07,0 < py. < 6;,
0< le < &', the following statements are true:

ur, rolbgy AT
a) Mf ' C /RI ' f; ! !
b)6 26.,5f25f,&.—urgér—u;.,6f—uf§6f—u'f.
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PROOF. a) => b) The inclusion from a) means that for any u € S we have:

N u©< N ul©:

Eelt—brt—btm,] €E[t—5],t—8,+ 1]
@< ) e,
€E[t—b7,t—81+1,] €E[t—8,t—8,+u']
e [t—=8p,t—br4p,] D[ty t =8+ ph], [t =85, t =65 +pg] D [t— 6,1 — 6%+ 1]
and eventually b). At this moment, the implication b) = a) is obvious. O

T ’ WY ’ k) E) 76
REMARK 130. Suppose that f C f”“ 4% and f“r ot - fﬂr b8 e
true. From Theorem 311 we have that if ur,ér,uf,éf are the inertial parameters
of f, then p,8,, 1, 8% are also the inertial parameters of f whenever 6, > &,
§p =8, 6p = pu, <8 — ., 85 — py < 8 — s are true.
Consider now the relatively inertial delay f. We state the problem of finding

that system f”” robts 0 satisfying
WOk,
Z) f c fﬂr Hys0f

8 PNTIR ] T
ii) for any f#“ roby0 with f C fle ok 7 we have f”“ Hrtt < f”r Oty
. WOropg,bp .
i.€. I‘;j B1%7 s the smallest relative inertia property in the sense of the
inclusion satisfied by f.
6. Duality

WOrspp by 30 f by O
THEOREM 312. The dual of fhy 507 s flr0rtndr,

PrOOF. For any v € S we have:

Orspiy,6
(") ) =

RI

={Zlz(t - 0) - 2(t) < N u(€), (t—0)-x(t) < N u(@)}t =
EE[t—br,t—br+p,] EE[t—b5,t—65+py]

= {alz(t - 0) - z(t) < N u(€), x(t—0)-a(t) < N u(@)}t =
EE[t—6p,t—br+p,] E€[t—6f,t—65+uy)

_ g§76frury§r (u)

THEOREM 313. If f C f”r’ bt s g relatively inertial delay, then f* is a
8 fothyrSr
relatively inertial delay with f* C fﬂf OO

ProOF. For any v € S we can write

u) = {Tle € f@)} C {Tlw € a0 (@)} =

ur, ol 0 ur, ol HgsOf by O
={z[T € fry" " (@)} = ( Y () = fri! (w)

and we have made use of Theorem 312. O
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7. Serial connection. The paradox of inertia

ExAMPLE 109. The following deterministic delays (see Example 105)

(7.1) 2(t—0)-a(t)= () 20 ult),
Eeft—2,1)

(7.2) 2(t—-0)-z(t) = [ @(&)-u(t)
Ee[t—2,1)

and

(7.3) y(t—0)-yt)= () - =)
Eeft—4,t)

(7.4) y(t—0) -y = () v ()
Eeft—4,t)

are relatively inertial:

and respectively
y(t —0)-y(t) < a(t),

y(t —0) - y(t) < a(t).
For symmetry reasons, if their serial connection is relatively inertial, then it satisfies

(7.5) y(t —0)-y(t) < N ),
EE[t—6,t—6+u]
(7.6) y(t—0)-y(t) < N u©,

EE[t—8,t—8+4]
where 0 < p1 < 6. We choose u(t) = Xjo,1)u(2,3)ua,00) (£); for which (7.1), (7.2) give
z(t) = X[0,3)U[5,00) (t) and, from (7.3), (7.4) we infer y(t) = X[0,4)U[8,00) (t). We have

ﬂ u(§) = X[&,1+§7,u)u[2+§,3+§7,u)u[4+§,oo)(t)v
EE[t—6,t—6+u]

m U(E) = X(—o0,6— ) U[146,24+8—p)U[3+6,4+5—p) (1)
E€[t—8,t—6+p]
where, in principle, the intervals [6,1+6—p),[2+6,3+6—p),[14+6,2+6—pu), [3+
8,4+ 6 — 1) may be empty or non-empty. By taking into account (7.5), (7.6) we
get:

(7.7) X{0,8} (8) < X[6,146— ) U[246,3+6— ) U[4+6,00) (1)

(7.8) X143 (1) < X (00,6 ) U[146,246— ) U[3+6,4+6—p) (1)
(7.7) implies 6 < 0, thus 6 = p = 0. This represents a contradiction with (7.8), that
becomes
X{a3(8) < X(—o0,0u11,2)U13,4) ()-
The conclusion is that the serial connection of the relatively inertial delays, in
this case (7.1), (7.2) and (7.83), (7.4), is not always a relatively inertial delay. This
failure was previously called by the author the ’paradox of inertia’.
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8. Intersection
THEOREM 314. For any numbers 0 < p, < 6,,0 < pp < 65 and 0 < p. <

8,0 < pp < &', the intersection fry Ot ¥1 f#” LN P*(S) system
defined by the znequalztws

-0 () w©- ) @)

EE€[t—6, t—6,4p1,] €E€lt—8]t—6] 4]
2(t—0) - x(t) < N u(§) - N u(f).
€€[t—67t—85+puy) £€[t—8 t—8)+u]

ProoOF. For any u € S, the constant functions 0,1 € S belong to the intersec-

&

tion f”“ ks ’§f( N f”” mH *(u). The statement is obvious. O

g0 RNy

REMARK 131. If in the intersection f”“ K20 f” 1%t we have Vi €

R, [t—06p, =6, 44, [t =6, t—6,+p,] # O and [t—65,t—6 p4pu ] N[t—06", t— 6f+uf] #

(), then this intersection is a relative inertia property but, in general, the previous
property 18 not true.

If f C f”” B0 s a delay and g : S — P*(S) is a system with the property

Yu € S, f(u) Ng(u) # 0, then we note that f N g is a relatively inertial delay
c fNr) T‘7/’Lf76f

9. Union
THEOREM 315. Given the numbers 0 < Nr <650 < pyp <07, 0 <y <

rog,6 NNTR .
8,0 < il < 8}, the union f”” SRRV f”r oS g P*(S) is expressed by

the inequalities

w(t—0) - 2(t) < N wou N wo,

EE[t—0p,t—br+p,] §E[t—67,t=67+n1]
z(t—0)-z(t) < N u(€) U N u(€).
E€[t—bs,t—8s+puy] EE[t—0" t—8"+p')

10. Non-anticipation
THEOREM 316. For 0 < p, < 6,,0 < py < Oy the relative inertia property

I ST P -, . . . .
1’;1 PRI s non-anticipatory in the sense of Definition 65, items v),...,ix).

PROOF. The property of non-anticipation from Definition 65, v)

vVt € R,Vu € S,Yv € 57U|(—oo,t] = V(o0 t] =

7"757“7 )6 r7 Sropig,6
— {2)(coog|r € Fri"" T (W)} = {Yy—ootly € fr7T ()}
takes place because for any t € R and u € S, the functlons N u(§),
. ge[t_éw“)t_(sr"rﬂr]
u(§) depend on u|(_o 4 only etc. O

§eft—=65,t—b05+puy]
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THEOREM 317. Let f be a mon-anticipatory delay in the sense of Definition
65, either of items v),....iz) and suppose that Yu € S, f(u) N fry T’Mf’(sf( ) # 0.

oy,
Then the relatively inertial induced delay f N f”” K01 satisfies the same non-
anticipation property.

PrOOF. We can make use of Theorem 316 and of the version of Theorem 185
that is true for this definition. O

11. Time invariance

g0 . . .
THEOREM 318. The relative inertia property f”” R0 s time invariant.

ProoF. For any d € R and any u € S we infer that

g}75r7#f75f' (U o Td) —

= {zfz(t = 0)-2(t) < N (wor?)(€),

EE[t—6,,t—6r+tp,]

w(t—0) - 2(t) < N (wor®)(§)} =

EE[t—b7,t—b5+uy]

= {@lz(t = 0) - 2(t) < N u(§),

feft—d—6,t—d—6r4p,.]

2(t—0)-2(t) < N u(€)} =

g€lt—d—65,t—d—8s+uy)

= {zfz(t+d—0)-z(t+d) < N u(€)

EE[t—5r 6,4,

)

st +d—0) z(t+d) < N u(@)} =
EEt—67,t—65+1uy]
= {wor|z(t — 0)-x(t) < N u(§), x(t—0)-a(t) < N u(§)} =
EE[t—8r,t—br+p,] Ee[t75f7t7§f+ﬂj']
={zorlzcf #”‘Sr’”fﬁf (u)}.
O

THEOREM 319. Let f be a time invariant delay. IfVu € S, f(u)N f”“ Orobty 01 (u) #
(0, then the relatively inertial delay induced by f, f N f”” i s time invariant.

WOt Of o .
PRrROOF. The function f N f“r H0%7 ig a delay, because it is included in f
and it is non-empty. It is also time invariant as intersection of two time invariant

systems. ]
THEOREM 320. Let be the numbers 0 < p, < 6,, 0 < py < of.
a) fup N f”“ R8T s time invariant.
b) fup N fry brobts 01 i self-dual iff p, = py, 6, = 5.
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PrOOF. a) By Theorem 252, fyp is time invariant and Yu € S, fyp(u) N
Oy ,6 . . . .
g}’ oo ( ) 7é () is true because a constant function belongs to the intersection.

fupN f”“ "#5%7 i the intersection of two time invariant systems.

b) Only if

Ok, WOy, 6ok, V6 f s
fUDmeT Ky fi(fUDmeT Ky f) *fUDm( /"L’V‘ Ky f) 7fUDmef £ oy s0

and we prove that this is true only if 1, = puy, 6, = éy. O

12. Zeno delays

Ok,
THEOREM 321. The condition necessary and sufficient in order that f”T o7

be not Zeno is that 6§ > 6p — ., 6 > b5 — piy.

Hop Oty 6 f

PRrROOF. The necessity Suppose against all reason that f} is not Zeno

and 6y <6, — p, and let be u = X(=00,0 for which
m & = m X(=00,0)(§) = X(—00,6,—p) (1),
EE[t—6y,t—6r+p,] E€[t—6pyt—8r+p,]

ﬂ u(f) = m X[0,00) (§) = X[5 ;,00) (£)-

EE[t—bs,t—65+uy] EE[t—6p,t—6p+py]

e

g0
For any € > 0 we have that there are &’ € (0,¢) and x = X[5, ./ 5,) € f”“ K0T ()

HopyOrsfiyp 05 .

contradiction with the hypothesis stating that fg} is not Zeno. The other

roOrstiy 6
assumption that fp;"""f

diction.
The sufficiency We have

ur,5r,uf75f Sp—brtp,6r—b5+py Sp—brtp,,6r =65ty
RI C far CJar )

is not Zeno, but 6, < 65 — puy, gives a similar contra-

where the first inclusion follows from Theorem 309, while the second, from the fact
that [t,t+067—0r+p,] D [t,t 4+ —0r+p1,), [t,t 406, =05 +pup] D[t t4+0,—65+puyp).
The statement is a consequence of Theorem 307. O

COROLLARY 10. No Zeno delay f C fry brobtr 8 orists if 6p > 60 — iy, 6 >
op = g
13. The study of a deterministic delay
THEOREM 322. Let 0 < m, < d,, 0 < my < ds be such that dy > d, — m,,

d, > dy —my is true. The equations

(13.1) w(t—0)-z(t) = z(t—0)- N u(f),

EE[t—dy t—dr+my)

(13.2) a(t—0)-z(t) = z(t — 0) - N u(€)

ﬁe[t—df,t—df-‘r?nf]

satisfy the following properties:
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a) the consistency with the initial conditions: Yu € S,Vx € S, if x satisfies
(18.1), (18.2), then x(—oo + 0) = u(—oo + 0) and there is to € R such that, for
any t < ty, we have

(13.3) z(t—0)-z(t)=z(t—0)- N u(€) =0,
EE[t—dy t—dr+m,)
(13.4) z(t—0)-z(t) = z(t — 0) - N u(€) = 0;

§€[t—df,t—df+mf]

b) (13.1), (18.2) define a deterministic system f;
¢) the consistency of the system with the final conditions: f is a delay and
Yu € S, there is t1 € R such that Vt > t; we have (13.3), (18.4) fulfilled;

d) f C fgllmdr»"”f»df;

di—d.+m,,d.—ds+m
e) fC far R

Myp,dr,my,dy
f) f C fBD 9
g) f is time invariant;

h) f is self-dual iff d, = dy and m, =my;
i) [ is non-anticipatory in the sense of Definitions 63 and 65, items v),...,ix).

PROOF. a) Let u € S,z € S be arbitrary for which there are t),t, € R and
A i € B such that @)ooy = pyu_ ey = A. Thus, there is ty < min{t{),tg +

dy —my,to +ds —my} such that (13.1), (13.2) become for t < tg
. M fr—

?

= =

=
= =

T

We get u = A

b) For any u € S, from a) we know that there is ¢y € R such that for ¢ < ¢y the
solution is unique and is given by z(t) = u(—oo + 0). The supposition that (13.1),
(13.2) do not define a system means the existence of t; > to such that at least a
solution z exists for ¢ < ¢; and at ¢; there is no solution. Let be z(¢; — 0) = 0, for
which (13.1) gives

z(t1) = N u(§),
Eelti—dr,t1—dr+my)

contradiction; if z(¢; — 0) = 1, (13.2) gives

x(tl) = m mv

Eefti—dy,t1—dy+my]

contradiction again with the supposition that at ¢; there is no solution. As t; was
arbitrary, the solution x € f(u) exists and because u was arbitrary, f is a system.
The proof of the uniqueness is similar to that of the existence, the difference
being that the supposition ’at ¢; there is no solution’ is replaced by ’at ¢; there are
two solutions z(t;) = 0,z(¢1) = 1.
c¢) We fix some arbitrary u € S, and we suppose that 3t; € R, Vt > t1,u(t) = 1.
Because Vt > t1 +d,., N u(§) =1 and N w(€) = 0, we get
geft—dy t—dr+m,] E€ft—dy,t—ds+my]
that the unique solution of (13.1), (13.2) fulfills V¢ > t; +d,., x(t) = 1. The situation
is similar for 3t; € R, Vt > t1, u(t) = 0, when V¢t > t1 + dy, 2(t) = 0. We conclude
that V¢t > t; + max{d,,d¢}, (13.3), (13.4) are true.
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d) From (13.1), (13.2) we infer
z(t—0) - x(t) < ﬂ u(§),

E€lt—dy t—dr+my)
-0 () .
celt—dy t—dp4my]
e) We take into account item d), CCpp and we apply Theorem 309.
f) We suppose against all reason that there are ¢ € R,u € S such that

N u(§) = 1 and z(t) = 0; from (13.1) we get x(t —0) = 0. Thus
ceft—dy t—dr+my]
z(t — 0) = 1 and, on the other hand, because N u(§) = 0 (from

E€t—dy,t—dy+my]

CCpp), equation (13.2) gives x(t) = 0, thus x(t) = 1, contradiction. In other
words N u(§) < z(t). The inequality z(t) < U u(§) is
eft—dr t—dr+m,] eft—dy,t—ds+my]

similarly proved.
g) Let u € S,d € R be arbitrary and we replace x, u in (13.1), (13.2) by y, uo7.
From the first equation we have the following equivalent properties:

y(t=0)-y(t) =y(t - 0)- N (wot?)(&);

c€lt—dy,t—drtmy]

JE- 0y =yt () uE-d:

g€ft—dy t—drt+m,]

y(t —0)-y(t) =yt —0)- N u();
E4+det—dy t—dr+m,]
y(t—0)-y(t) = y(t —0)- N u(€);
(eft—d—dy ,t—d—dr+my)
(13.5) y(t+d—0)-y(t+d) =yt +d—0)- N u(€),

EElt—dr t—dr+my)
while from the second equation respectively
(13.6) yt+d—0)-y(t+d) =yt +d—0)- N u(€).
e [t—df,t—df-‘rﬁlf]

At this moment we compare (13.1), (13. 2) with (13.5), (13.6), deterministic systems.
We infer the fact that y(t + d) = z(t), i
(

y(t) = =(t - ) (zor?)(t).

h) Yu € S, f*(u) = f(w) = f(u), where x = f(u), implies the fact that (13.1),
(13.2) and

T
T

2(t = 0)-a(t) = x(t - 0)- N u(§),
§eft—dy t—dyt+my]
z(t—0)-z(t) = z(t —0) - m u(€)
¢eft—d, t—d,+m,]
have the same solution. We choose u = x(o 5), Where § > max{m,,my} for which
the unique solutions of the two systems are x4, 54q,) a0d X(4; 544,)- Thus d. = d.
By supposing against all reason that m, # my, we choose for example m, < my,
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then ¢ € (m,., my); in this situation the unique solutions of the two systems become
X(d,,s5+d,;) and 0, contradiction. The assumption that m, > my gives a contradiction
too. We proved that m, = my.

i) We show the non-anticipation in the sense of Definition 63. If x is constant,
then the system is non-anticipatory. Thus we suppose that x is variable and this
implies that u is variable too. Let d € R be such that d = min{t|u(t — 0) # u(t)}
and take, for example, u(—oo + 0) = 0. Then, because u(t) < X{40)(t), We can
write

m u(§) < m X[d,00) (§) = X(d+d,.,0) ()

EElt—dr t—dr+m,) EE[t—dr t—dr+my)
and, from (13.1), we infer that
x(t —0)-x(t) = z(t - 0)- N u(§) < N (&) < X{dtd,,00) (1),

Ce(t—dy t—dr+my] Ceft—dy t—dr+m,]

where x(—oo 4+ 0) = 0, from a). These remarks show that

min{t|u(t — 0) Zu(t)} =d < d+d, < min{t|z(t — 0) # x(¢)}.
The situation u(—oo + 0) = 1 is treated similarly. Therefore f is non-anticipatory.

O

REMARK 132. If in (13.1), (13.2) we put m, = my = 0, then CCpp implies
d, = dy = d and the system

x(t—O)-@ z(t—0)-u(t —d),

z(t—0)-z(t) = z({t—0) u(t—d)
coincides with Iy, because x(t) = u(t — d) is a solution and the solution is unique.

THEOREM 323. Let the real numbers 0 < m, < d,, 0 < my < dy be arbitrary
with d, —my < df, dy —my < d,. The following systems a),...,q) are equivalent,
in the sense that for any u € S, if x € S satisfies one of them, then it also satisfies
any other:

a)
z(t —0)-x(t) = z(t - 0)- N u(§),
§E[t—dr t—drtm,]
2(t—0)-x(t) = 2(t—0) - N u();
eft—dy,t—ds+my]
b)
N we) <)< U u(€),
E€ft—dr t—dr+my) e€t—dy t—dg+my]
z(t—0)-z(t) < ﬂ u(§),
E€lt—dr t—dr+my)
a(t - 0) - 2(t) < N u(f);
§eft—dy,t—dstmy]
¢)

N w®<a,

Ce[t—dy t—dr+my)
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M w©<a@)

§€[t—df,t—df+mf]

N w©- N u(€) < w(t—0)-(t) Ux(t —0) - x(t);

IN

EE[t—dy t—dr+m,) eft—dy,t—ds+my]
d)
Lif N u(§) =1
§E[t—drt—dpt+my]
x(t) =4 0,if N w@=1;

£e€lt—dyt—dy+my]
x(t — 0), otherwise

e)
= () wQuat-0- U )
E€[t—dy,t—dr+m,] E€[t—ds,t—dp+my]
f)
D) =¥ —0)- () w@Uat-0 () uE:
E€[t—dp t—drtmy] ceft—dy t—dy+my)
9)
W0an) () w@Uet-0 T () wEu
(eft—dr t—dr+my) E€ft—dy,t—ds+my]
GE 0T () w@Ua-0)-a()- () wO=1
feft—dy t—dr+my) Eeft—dy,t—dy+my]

PROOF. Let t € R and u € S be arbitrary and fixed. In a),...,g), due to the
satisfaction of CCpp, there are three possibilities:

i) N u(§) = U u(§) = 0;
Ceft—d, t—dr+m,] EE[t*df,t*dfﬁ*’ﬂLf]
ii) N u(&) =0, U u@) =1
Ee(t—dy t—dr+m,] EE[tfdf,tfdf%»mf]
iii) N u(§) = U u(§) = 1.
feft—d, t—dr+m,] Eeft—dy,t—ds+my]

Case i) By taking into account the fact that

U u() = N u(@) =1,

Selt—dy t—dptmy] §elt—dy,t—dptmy]
a) is
x(t—0)-z(t) = 0,
z(t—0)-z(t) = z(t—0),

whose unique solution is x(t) = 0. The first requirement from b) gives z(t) < 0,
thus z(t) = 0. The second inequality c¢) shows that 1 < x(t), that is z(¢) = 0. d)
and e) give z(t) = 0 too. f) becomes z(t — 0) @ x(t) = x(t — 0), in other words

z(t) = 0. Because N u(§) =1, in this case g) is
¢€ft—dp t—dptm.]

(t—0)-2(t) Uzt —0)-2(t) = (x(t—0) Uzt —0))-z(t) =z(t) =1,
ie. z(t) =0.
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The other two cases are similar, with z(t) = (¢ — 0) for Case ii) and z(t) =1
for Case iii). O

14. The study of a deterministic delay, variant

LeEMMA 3. Let be d > 0,dy >0 and w € S. The following formulae are true:

(N w@=ut-0- [J Du);

Ee[tfdrvt) EG(tde,t)
N w@=ut-0)- |J Du(®).
£€[t—df,t) ﬁE(t—df,t)

PROOF. Prove the first of these two relations and let ¢ be arbitrary and fixed.
We have:

u(§) =1 <= u(t — 0) = 1 and w|j4—q, 1) is constant <=
§eft—dr,t)
(we apply the right continuity of w in ¢t — d,.)
<= u(t —0) = 1 and u|(4—q, 1) is constant <=
= u(t—0)=1and V¢ € (t — d,,t), Du(€) = 0 <=
—ut-0- J Du¢=1

Ee(tfdrvt)
Because ¢ was arbitrary, the equation is proved. O

rodyomp.d 5,,6 Hos Oy bt 50 dy,d
REMARK 133. The idea of replacing fiy """, £47°5, frr "0 by fap’,
885 p6r,65

A, frp? has implications in the way of understandmg Theorem 822. For
example, the delay from Theorem 323, f) takes the form

(14.1) Da(t)y=z(t—0)- () w@uat-0- () ul),
Eeft—dr,t) E€t—dy,t)
where d, > 0,dy > 0. In the self-dual version, when d, = dy = d > 0 we have:
z(t=0)- () w@ua-0)- () u)=
EE[t—d,t) EEt—d,t)

(we apply now Lemma 3)
=2(t—0)-u(t—0)- U Du(§)Ua(t—0)-ult—0)- |J Du(§)=

Ee(t—d,t) Ee(t—d,t)
= (@(t—0)-u(t—0)Ua(t—0)-ut—0)- | J Du(§) =
Ee(t—d,t)
(x(t—O)EBu(t—O))' U Du(€
e(t—d,t)

such that equation (14.1) becomes

(14.2) Dw(t):(x(t—O)EBu(t—O))- U Du(¢
c(t—d,t)
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As we have already stated in Example 61, the system (14.2) is non-anticipatory
in the sense of Definitions 63, 64 and the second property is not necessarily true
for the system (15.1), (15.2).

If T)(—oo,ty) = 2(—00 + 0) = u(—00 + 0) = Uj(—ooty), then (14.2) is equivalent
to

(14.3) Da(t) = (x(t = 0)@u(t—0)) - |J Dul€) Xptpta00) -
ge(t—d,t)






Part 3
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CHAPTER 14

The equations of the ideal latches

1. Ideal latches, the general equation

THEOREM 324. The following two systems

x(t—0)- @:x(t—O) u(t)
(L.1) z(t —0) - z(t) = z(t — ) v(t)
u(t) - v(t) =
and
(1.2) 2(t) - u(t) - v(t) Uz(t) - ult) - v(t)U

Ua(t—0) - z(t) Uz(t —0) - 2(t)) - u(®) - v(t) = 1,
where u,v,x € S and x is the indeterminate, are equivalent, i.e. they have the same
solutions.

ProOF. Let t € R be arbitrary and fixed. We have the following possibilities.
Case a) u(t) = 0,v(t) = 0. We must show the equivalence between

and
z(t—0)-z(t)Uz(t —0)-z(t) =1,

i.e. 2(t —0) = x(t). The first system is equivalent to any of
z(t—0) - z(t) Uzt —0) z(t) =0,
x(t—0)-z(t)Uzt—0) x(t) =1,

(z(t —0) Uz(t)) - (x(t — 0) Uz(t)) =1,
z(t—0) - z(t)Uz(t—0) z(t) = 1.
Case b) u(t) = 0,v(t) = 1. We must show the equivalence between

{ (x(t—O)-x(t)zO

t—0) z(t) =x(t—0)
and z(t) = 0. We infer

0 = z(t—0)-z(t)U(z(t—0) z(t)®x(t—0))
= z({t—0)-z(t)Uz(t—0)-z(t) z(t—0)Uz(t—0)-z(t) - z(t —0)
= z(t—0)-z@)U(z(t—0)Ux(t)) x(t—0)
= z(t—-0)-2z@)Uz(t—0) z2(t) = (x(t —0) Uz(t —0)) - z(t) = z(t).
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Case ¢) u(t) = 1,v(t) = 0 Similarly to b), it is shown that
{ x(t —0) - x(t) = ( 0)

(t = 0) - x(t

is equivalent to z(t) = 1.

Another line of proof consists in:

- giving to u(t),v(t) all possible values and remarking that each time (1.1),
(1.2) have the same solutions z(t — 0) = z(t)

0=2() - u(t)
0=2z(t) v(t) ,
u(t) - v(t) =0

2 (t) - u(t) - o(t) Ua(t) - ult) - v(t) Uu(t) - o(t) = 1,
for some ¢ty € R and ¢ < ty (see Table 1);

u(t) v(t) =(t)
0 0 01
0 1 0
1 0 1

Table 1

- giving to u(t),v(t), z(t — 0) all possible values and remarking again that each
time for ¢ > g, (1.1), (1.2) have the same solutions z(t) (see Table 2).

u(t) o) z(t—0) z(t)

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1
Table 2

0

DEFINITION 122. The equations (1.1), (1.2) are called the equations of the
ideal latch. The system fr : U — P*(S),

U = {(u(®),v(®))|u,v € S,u(t) - v(t) = 0},

defined by any of them is called the ideal latch while the equation

u(t) -v(t) =0
is called the admissibility condition of the inputs.

REMARK 134. [t is interesting to compare the ideal latch fr1, equation (1.1) and
the deterministic system f described by (13.1), (158.2), Ch. 13. The admissibility
condition of the inputs for f

N u®- N w®=

eft—dy t—dr+m,] €(t—dy,t—ds+my]
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is a property equivalent to [t — d,,t —d, + m,) N[t —ds, t —ds +mg] # 0 and to
CCpgp. The fact that Vu € S, 3ty € R, Vt < ty,

N u(§) = u(—o00 +0), N u(§) = u(—o00 +0)

(eft—dy t—dr+my) E€ft—dy,t—ds+my]

makes f be deterministic, unlike frr.
THEOREM 325. The initial state function of frr is defined by
B,if u(—o0+0) =v(—00+0)=0
P U — P*(B),V(u,v) eU, ¢0(U,U) = 0,if u(—oo—i—O) = 07’0(_00 +O) =1
1,if u(—oc0o+0) =1,v(—c0+0)=0

PRrOOF. For any (u,v) € U, there is a tq € R such that u|(_s 1) = u(—00 +
0),V|(=c0,te) = v(—00 + 0) and Vt < to we are in one of the cases a), b), c) of
Theorem 324. In case a) we obtain z(t) € B constant, because z(t — 0) = x(¢); in
case b), z(t) = 0 while in case c), 2(t) = 1 (see Table 1). O

THEOREM 326. The system frr, is finite and has the following properties.

a) If u =v =0, then frp(u,v) ={0,1}.

b) If u(—oo+0) = v(—oc0+0) =0, but 3t € R, u(t)Uv(t) = 1, then frp(u,v) =
{2, 2"} and the two states ', x" satisfy

/ _ " o / o
Tl(=o0,t0) = 0 T(=o0,t0) = 15 Tito,00) = Tlfto,00):
where we have denoted tg = min supp(u U v).

¢) For u(—oo +0) Uv(—oo +0) =1, frr(u,v) has exactly one element.

PROOF. a) As we have seen from the proof of Theorem 324, in case a), the
equation of the ideal latch is z(t — 0) = x(¢) and it has the constant solutions 0, 1.

b) The equation x(t — 0) = =(t),t < to has the solutions z’,z” satisfying
xf(_w,to) =0, xv(_oo,to) = 1. At this moment suppose that u(tg) = 0,v(tg) = 1,
making (1.2) to become

a'(to) = 2" (to) = 0,

with the implication that V¢t > tg, 2/(t) = 2”(¢). The situation is similar for u(to) =
1,v(tg) = 0 and 2’(tp) = 2" (tp) = 1.

¢) For u(—o0 + 0) Uv(—o0 4+ 0) = 1, Theorem 325 implies that the value of
xz(—o00 4 0) is unique for all x € fr1(u,v), whence the uniqueness of x. O

THEOREM 327. The system frr is time invariant.
PrOOF. Let d € R and u,v € S be arbitrary and fixed and the system

z(t—d—-0)-z(t—d)=z(t—d—0) ult—d)
(1.3) 2(t—d—0)-z{t—d) =a(t—d—0)-v(t—d)
u(t—d)-v(t—d)=0

By comparing (1.1) with (1.3) we can see that Vo € frr(u,v), we have z o 7% €
fro(uwo 14 vor). In other words the inclusion

{xorx € frr(u,v)} C fro(uord vor?)
is true. The inverse inclusion is also true. O

THEOREM 328. The ideal latch is non-anticipatory in the sense of Definitions
63 and 65, items v),...,ix).
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PROOF. Let us show the non-anticipation in the sense of Definition 63.

The first possibility is that « = v = 0. In this case x is constant and fry is
non-anticipatory.

The second possibility is that 3ty € R,tp = min supp(u U v), implying that
T|(—o0,to) 18 constant. Thus min suppDuUsuppDv = ty and one of the two solutions
switches at tg, the other does not, the property of non-anticipation being fulfilled
again.

The third possibility is that u(—oco 4+ 0) Uv(—oo + 0) = 1 and the solution
x € frr(u,v) is unique. If u,v are constant, then z is constant and fry is non-
anticipatory. Otherwise, when there is tg = min suppDu U suppDv, we have
two possibilities: that x switches or not in ¢y, the non-anticipation property being
satisfied each time.

Let us show the non-anticipation in the sense of Definition 65, v). Let tg € R,
(u,v), (u',v") € U be arbitrary and fixed, such that uj_q ¢+, = ui(foo,to] s U)(—o0,to] =
Uf(foo,tg]' Due to the finiteness of f;;,, Theorem 325 shows the existence of a t; € R
having the property that {2/ sc.e}& € fr1.(t,0)} = {yj( ooyl ly € Frr (s}, ie.
that ¢; with Vo € frp(u,v),2)(—0ct,] = 2(—00 +0),Vy € fro(v',v"),y)(—0ot,] =
y(—oo + 0). If t1 > to the non-anticipation takes place, while if ¢; < tg, then it is
a consequence of the function (u(t),v(t),z(t — 0)) — =(t) from Table 2, applied a
finite number of times at the points of the set t € (¢, to] N (suppDuU suppDv). O

THEOREM 329. The system frr, fulfills the surjectivity property
Ve e S,3(u,v) € U,z € frr(u,v).

PrOOF. For any x € S, it is sufficient to choose © = & and v = T, since in this
case (1.2) becomes z UT = 1. O

THEOREM 330. The system frr, is relatively stable with a bounded final time:
Y(u,v) € UNSP 3ty € R,Vz € frr(u,v),3pu € B, 2t;,00) = W

PROOF. Suppose that for arbitrary (u,v) € U, there are ty € R and A, A2 € B
such that u|(; o) = A1, V|jt;,00) = A2 1€, for t > ¢y, (1.1) becomes

z(t—=0)-z(t)=z(t—0) -\
z(t—0) - z(t) =zt —0) X

For any = € frr(u,v), we have: if \y = A2 = 0, then T|t;,00) = z(ty — 0); if
A1 =0, 2 =1, then x|, o) = 0, and if Ay =1, A2 = 0, then x|, o) = 1. O
2. C element

Any of the following equivalent statements:

(21) { 2(t—0)-2(t) = 2(t - 0) - u(t) - v(t)

x(t—0)-z(t) =zt —0) - u(t) - v(t)
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FIGURE 1. The C element
Id Id
X C X
v v

FIGURE 2. The symbols of the C element

are called the equations of the C element (of Muller), where u, v, z are signals,
the first two called inputs and the last — state. Equations (2.1), (2.2) are the
equations of a latch (1.1), (1.2), where u(t) is replaced by w(t) - v(t) and v(t) is
replaced by w . m It is noted the fulfillment of the admissibility condition of
the inputs. The study of (2.2) provides: xz(t) is 1 if u(¢t) = v(t) = 1, z(¢) is 0 if
u(t) =v(t) =0, and z(t) = z(t — 0), x(t) keeps its previous value, otherwise. The
general form of equations (2.1), (2.2) for m inputs w1, ..., Uy, is

{ z(t—0) 2@t) =z —0) u(?) ... un(t)

z(t—0) - x(t) =2t —0) ur(t) ... - upm(t) ’

x(t) - ur(t) - oo um(E) Ua(t) - ur(t) - ... - um(t)

Uzt —=0)-z(t) Uzt —0) -2(t) - ur(t) - oo - um(t) - (w1 (B) U ... U (b)) = 1.

3. Asymmetric C elements

In [24], the circuit from Figure 1 is called the symmetric C element and
the asymmetric C elements from Figures 3, 5 are presented, together with their
symbols from Figures 4 and 6. In the first case the equivalent equations are

(3.1) { w(t —0)-x(t) = 2(t —0) - u(t) - v(t)

x(t—0)-2(t) =2t —0)-v(t) ’
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FIGURE 3. Asymmetric C element

C X

+

FIGURE 4. The symbol of the circuit from Figure 3
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FIGURE 5. Asymmetric C element
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FIGURE 6. The symbol of the circuit from Figure 5

(3.2) z(t) - u(t) - v(t) Uz(t) - v(t)

Uzt —0)-z(t) Uz(t —0) - z(¢)) - u(t) -

while in the second case they are

(3.4) { ot —0) - x(t) = z(t—0) - v(t)

~—
1
—~~
~
~—
I
—_

(3.5) x(t) - v(t) Ux(t) - u(t) - v(t)
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FIGURE 7. The RS latch circuit

4. C-OR element
In [26], the following latch, called COR22, is indicated:

(4.1) { z(t—0)-2(t) =2t —0) (u) vE) Uy(t) - 2(@))

x(t—0) -xz(t)=x(t —0) u(t) vt)- y)-2(t)
or, equivalently,

(4.2) w(t) - (ult) - o(t) Uy(t) - 2(t) Ua(t) - (u(t) Uo(t) Uy(t) U z(1))

U(a(t = 0)-a(t)Uz(t—0)-z(t))- (u(?) - o(t) Uy(t) - 2(2))- (u(t) Uo(t) Uy(t) Uz(t) = 1.

In these equations the inputs are u,v,y, z, while x is the state. We can see that

in (1.1), u(t) was replaced by wu(t) - v(t) Uy(t) - 2(t), while v(t) was replaced by
(t) Uv(t) Uy(t) Uz(t) and that the admissibility condition
t) U

u(t) - w(t) - y(t) - 2(t)
(ult) - o(t) Uy(t) - (1) - ult) - v(t) - y(t) - 2(t) = 0
[

is true. The paper [26] does not present the symbol of this circuit.

=Uu
‘v

5. RS latch
The equations of the RS latch are given by

{ Q(t—0) Q) =Q(t—0)-5(t)
(5.1)

or, equivalently, by

(52) Q)T - S()UQW - (1) - ST
U(Q(E—0)- Q) UQ(—0)- Q) - R(t) - S(t) = 1.

In (5.1), (5.2) R,S,Q are signals. The signals R, S are called inputs: the reset
input and the set input, while @ is the state, the indeterminate relative to which
the equations are solved. These equations coincide with (1.1) and (1.2), but the
notations are different and traditional.We find the things discussed in Section 1 by
the following statements related to equation (5.2). At the RS latch, Q(¢) = 1 if
R(t)=0,51)=1;Q(t) =0if R(t) =1,5(t) =0; and Q(t) = Q(t — 0), @ keeps its
previous value if R(t) =0,S5(t) = 0.
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F1cUure 8. The symbol of the RS latch

S
Q
&
Q
R

FIGURE 9. The clocked RS latch circuit

6. Clocked RS latch

The equivalent statements

Qt—0)-Q1) =Q(t—0)-S(t)-C(t)
(6.1) QU—0) Q1) =Q(t—0)-R(t)-C(t) ,
R(t)-S()-C(t) =0
and

C(t) - (Q(t) - R(1) - S(H)UQ() - R(t) - S(¥)
(62) U(Q(E=10)- Q) UQ(t —0)- Q(1)) - R(t) - S(1))

UC(t) - (Q(E—0)- Q) UQ(t—0)-Q(t)) =1
are called the equations of the clocked RS latch, where R, S, C, @ are signals:
the reset, the set and the clock input, and the state respectively. The equations
(6.1), (6.2) follow after some elementary computations from (1.1) and (1.2), where
u(t) = S(t) - C(t), v(t) = R(t) - C(t).The clocked RS latch behaves like an RS latch
when C(t) = 1, while it keeps the state constant Q(t) = Q(t — 0) when C(¢t) = 0.

7. D latch

Any of the following equivalent statements

{ Qt—0)-Q) =Q(t—0)-D(t)-C(t)
ct) ’

(7.1) Q(t—0)- Q1) =Q(t —0)- D(?) -
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FI1GURE 12. The symbol of the D latch

and

(7.2) C(t)-(Q(1)- D(H)uQ(t)- D) UC(H) - (Q(t = 0)- QIHUQ(t —0) - Q(1)) = 1

respectively are called the equations of the D latch, where D, C, Q) are signals:
the data input D, the clock input C and the state Q. On one hand, from (7.1)
it is seen the fulfillment of the admissibility condition of the inputs. On the other
hand, (7.1), (7.2) are obtained from the equations of the clocked RS latch (6.1),
(6.2), where R = S - C and the traditional notation D for the data input was used,
instead of S. When C(t) = 1, the D latch makes Q(t) = D(t), while when C(t) = 0,
@ is constant.
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8. Edge triggered RS flip-flop

Any of the equivalent statements

P(t—0)- P(t) =P(t—0)-5S(t)-C(¥)

P(t—0)- P(t) = P(t—0)- R(t) - C(t)
(8.1) 7R(t) S(t)-C(t)=0 L

QEt—-0)-Q1)=Q(—-0)-P(t)-C)

QEt—0)-Q1)=Q(—-0)-P(t)-C()
and

O(t) - (Qt = 0)- Q) UQ(t —0) - Q1) - (P(t) - R(t) - S(t)

(8.2) UP(t)- R(t) - S(t) U (P(t—0)- P(t) U P(t — 0) - P(t)) - R(t) - S(t))
uC(t) - (Q(t) - P(t—0)- P()UQ(t) - P(t—0)- P(t)) =1,
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FIGURE 15. The symbol of the edge triggered RS flip-flop

respectively is called the equation of the edge triggered RS flip-flop, where
R, S, C, P,Q are signals: the reset input R, the set input S, the clock input
C, the next state P and the state ). In (8.1), (8.2) the signals R, S,C, P and
P,C,Q satisfy the equations of a clocked RS latch and of a D latch (see Figure
14), while (8.2) represents the term by term product of (6.2) by (7.2), written with
these variables. The two latches are called master and slave.

The analysis of this circuit starts with (8.2). We have

Case 1 3t,C(t) = 1. Because Q(t) = Q(t — 0),¢ is a point of continuity for Q).

Case 2 3t,C(t) = 0. We get
(8.3) Q(t) = P(t) = P(t—0).

Case 2.1 C(t —0) = 1. By taking the left limit in (8.2), it implies

(8.4) P(t—0)-R(t — 0)-S(t—0)UP(t — 0)-R(t—0)-S(t — O)UR(t — 0)-S(t —0) = 1,

wherefrom

P(t—0),if R(t—0)=0,5(t—0)=0
(8.5) Q(t) = 1Lif R(t—0)=0,5(t—0)=1
0,if R(t—0)=1,8(t—0)=0
Case 2.2 C(t —0) = 0. For the left limit taken in (8.2), it gives
Qi —0)=P(t—0).

If we take into account (8.3), ¢ is a point of continuity for Q.

We conclude that the only time instants ¢ when ) may switch are those when
C(t—0)-C(t) = 1. This is the so-called ’falling edge’ of the clock input that gives
the name of the edge triggered flip-flop.

9. D flip-flop
Any of the following equivalent conditions:
P(t—0)-Pt)=P(t—-0) D) C(t)
9.1) P{t—0)-Pt)=Pt—-0)-D()-C(t)
Qt—-0)- Q) =Q(t-0)- P@)- O(t)
Q(t—0) Q) =Q(t—0)-P(t)-C(t)
and

(9-2) C(t) - (Qt —0)- Q) UQ(t —0) - Q(t)) - (P(2) - D(t) U P(t) - D(1))
uC(t) - (Q(t) - P(t—0)- P(t)UQ(t) - P(t = 0)- P(t)) =1

respectively are called the equations of the D flip-flop, where D,C, P,Q are
signals, called: the data input D, the clock input C, the next state P and
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F1GURE 17. The symbol of the D flip-flop

the state ). We note that the equations of the D flip-flop represent the special
case of the edge triggered RS flip-flop, where R = S-C and S was denoted by
D. The D flip-flop has the state @ constant, except for the time instants when
C(t —0)-C(t) = 1; then (8.4) becomes

P(t—0)-D(t—0)UP{E—0)-D({t—0) = 1,

ie. P(t—0)= D(t—0), and (8.5) becomes

P(t—0),if Dt—0)=0,D(t—0)=0

(9.3) Qt) = 1,if D(t—0)=0,D(t —0) =1 =

0,if Dt—0)=1,D(t—0)=0

[ 1,ifDt—0)=1

_{ 0.if D{t—0) =0 —PE=0.
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FiGure 18. The JK flip-flop circuit

10. JK flip-flop

The equivalent statements:

(10.1)

and

Ct) - (Qt—=0)-QE)UQ(t—0)- Q) - (P(t) - J(t) - Q) U P(t) - K(t) - Q(¢)

(10.2) U(P(t = 0)- P() UP(t = 0)- P(t)) - (J(t) - K(t) UJ () - Q(1) UK (1) - Q(1)))

uC(t) - (Q(t) - P(t—0)- P(t)UQ(t) - P(t = 0)- P(t)) =1

are called the equations of the JK flip-flop, where J, K, C, P, Q) are signals: the
J input, the K input, the clock input C, the next state P and the state Q.
The first two equations of (10.1) (modeling the master latch) coincide with the
first two equations of the edge triggered RS flip-flop, where S(t) = J(t) - Q(¢),
R(t) = K(t)-Q(t), while the last two equations of (10.1) (modeling the slave latch)
coincide with the last two equations of the edge triggered RS flip-flop. We note that
the conditions of admissibility of the inputs of the master and of the slave latch are
fulfilled. Compare (10.2) and (8.2). The JK flip-flop is similar to the edge triggered
flip-flop. For example @ changes value only when C(t — 0) - C(¢t) = 1.

We present a difference relative to the edge triggered flip-flop. For this let be
t1 < to two numbers for which Vt € [t1,t2), C(t) = 1. Because in (10.2)

Vi € [t1,12),Q(t) = Q(t — 0) = Q(t1 — 0),
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FIGURE 19. The symbol of the JK flip-flop

we have two possibilities: Q(t1 —0) = 0 and Q(¢; — 0) = 1. The equations

P(t)- J(t) U (P(t—0)- P(t)UP(t—0)-P(t))- J(t) =1,

P(t)- K(t)U(P(t—0)-P(t)UP(t—0)-P(t)-K(t) =1,
obtained in the two situations, show that in the interval [t1,t2) P switches at most
once: from 0 to 1 in the first case (if J(¢) = 1), and from 1 to 0 in the second case
(it K(t)=1).

Let us take, in the equations of the D flip-flop, D(t) = J(¢) - Q(t) U K (t) - Q(¢).
By using the fact that
(Q(t—=0)- Q) UQ(t—0)-Qt)- P(t) - (J(1) - K(t) UJ(1) - Q) UQ(t) - K(t)) =
U@

=(Q(t-0)- QM UQEt—0)-Qt) - P()- (J() - QI UQ(D) - K(1)),
we get the equality

C(t) - (Q(t —0)- Q) UQ(t —0) - Q(t)) - (P(t) - J(t) - Qt) U P(t) - K(t) - Q1)U

(10.3) UP(t)- J(t) - Q(t) U P(t) - K(t) - Q(1))U
uC(t) - (Qt) - P(t = 0)- P(H)UQ() - P(t —0) - P(t)) = 1.

Equations (10.2) and (10.3) have similarities and, sometimes, the equation of the
JK flip-flop is considered to be (10.3).

11. T flip-flop

The following equivalent statements:

P(t—0)-Pt)=P(t—0)-Q(t)-C(¢)
(11.1) P(t—0)-P(t)=Pt—-0)-Q(t)-C(t)
Qt—0)-Qt)=Q(t—0)-P(t)-C(t)
Q(t—0) Q) =Q(t—0)-P(t)-C(t)
respectively
(11.2) C(t)- (Q(t—=0)-Qt) - P)UQ(—0)-Q(¢) - P(t))

UC(t) - (Q(t) - P(t—0)- P(t)UQ(t) - P(t —0)- P(t)) =1

are called the equations of the T flip-flop, where C, P, ) are signals: the clock
input, the next state and the state. The conditions of admissibility of the inputs
are fulfilled for the first two and for the last two equations from (11.1) (the master
and the slave latch). The equations of the T flip-flop represent the following special
cases: in the equations of the edge triggered RS flip-flop, S(t) = Q(¢), R(t) = Q(¢);
in the equations of the D flip-flop, D(t) = Q(t); in the equations of the JK flip-flop
(any of (10.2), (10.3)) J(t) =1,K(t) =
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F1GURE 21. The symbol of the T flip-flop

We consider the equation (9.3), showing, for D(t) = Q(t), that C(t—0)-C(t) = 1
implies
Q(t) = D(t—0) = Q(t - 0),
i.e. at each falling edge of the clock input, the state @ of the T flip-flop switches
(toggles) to its complementary value, while apart from these time instances, @ is
constant.






CHAPTER 15

Some applications of the flip-flops

1. A two bit shift register with serial input and parallel output

The circuit is the one in Figure 1.
Suppose the existence of the sequence ty < t; < ty < ... with the property that

C(t) = X[to,tl)(t) @ X[tQ,t3)(t) ) X[t4,t5)(t) D ...

In the equations

C(t) - (Q(t=0)- Q) UQ(t —0) - Q(1)) - (P(¢) - D(t) U P(t) - D(t))
uC(t) - (Q(t) - P(t—=0)- P(t)UQ(t) - P(t—0)- P(t)) =1
Ct)- (@ -0)- QU (t—0)-Q 1) - (P'(t) - D'(t) UP'(¢) - D'(1))
uC(t) - (Q'(t)- P'(t—0)- P()UQ'(t) - P'(t = 0)- P'(t)) = 1
derived from Ch. 14, equation (9.2), we take into account the fact that

Q(t) = D'(t)

and obtain

C(t)- (P(t)-D(t)U P

(t)- D(1) - (Q( = 0)- Q(t) - P'(t) U Q(t = 0) - Q(t) - P'(2))-
(QE-0)-QHUQ(t—0)-Q'(t)U

uC(t) - (Q(t) - P(t = 0)- P(t) UQ(t) - P(t —0) - P(t)):

(Q/(t) - P'(t—0)- PI() UQ'(t) - P'(t = 0)- P'(t)) = 1.
We infer:

el
C’I> >

FIGURE 1. Two bit shift register

239



240 15. SOME APPLICATIONS OF THE FLIP-FLOPS

t € (—o0,tg) :
Ct) = 0,
P(t) = P(t-0)=Q(t) =1’
P'(t)y = P(t—-0)=Q'(t)=y"

where we have denoted by z°,9° € B two parameters, representing the initial
conditions. Furthermore:

t e [to,t1) :
o) = 1,
P(t) = D(1),
Q) = Qt—0)=P(t)=Q(t—0) =2’
QW) = Qt—0)=Q (ty—0)=1y"
t € [t1,t2)
cit)y = 0,
P(t) = P(t—0)=Q(t) = P(t; —0) = D(t; — 0),
P'(t) = P(t—0)=Q'(t)=P'(t; —0) ="
t € [ta, ) :
ci) = 1,
P(t) = D(t),
Q(t) = Q(t—0)=P(t)=Q(t2-0)=D(t1 —0),
QW) = Qt—0)=Q (ta—0)=2a".
t € [ts,tg) :
ci) = 0,
P(t) = P(t—-0)=Q(t)=P(t; —0) = D(t3 — 0),
P'(t) = P'(t—0)=Q'(t)=P'(ts—0)=D(t1 —0).
t e [ta,ts) :
cit) = 1,
P(t) = D(1),
Q) = Q(t—0)=P(t)=Q(ts—0)= D(t3 - 0),
Q'(t) = Qt—0)=Q(ta—0)=D(t; —0).
t € [ts,te) :
cit) = 0,
P(t) = P(t—-0)=Q(t) = P(t; —0) = D(t5 — 0),
P'(t) = P'(t-0)=Q'(t)=P'(t;—0)=D(tz - 0)

with the conclusion that
Q) = 0 X(—oo,tl)(t) @® D(t1 —0)- X[tl,t?,)(t) ® D(t; —0) - X[t3,t5)(t) ©®
Q'(t) = yO'X(foo,tl)(t)@xO'X[tl,t;’,)(t)@D(tl70)'X[t3,t5)(t)®D(t370)'X[t5,t7)(t)@"'
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FIGURE 2. Two bit counter

that may be easily generalized to an n-bit shift register with serial input and parallel
output.

2. A two bit counter in cascade

We analyze the circuit in Figure 2.
For some unbounded sequence ty < t; < ta < ... the clock is given by the
equation:

C(t) = X[to,tl)(t) D X[tQ,tg)(t) @ X[t4,t5)(t) D ...
In the equations (11.2) from Ch. 14 of the T flip-flops

C(t) - (Q(t=0)-Q(t) - P(t) uQ(t —0) - Q(t) - (1)U
uC(t) - (Q(t) - P(t—0) - P)UQ(t) - P(t—0)- P(t)) =1
C'(1)- (Q'(t=0)-Q'(t) - P'() UQ'(t = 0) - Q'(t) - P'(¥))U
U (t) - (Q'(t) - P'(t = 0)- P/(H) UQ'(t) - P'(t = 0) - P'(t)) =1
we ask that

)

Qt) =C'(1).

After using this last equation, by multiplication, we get:

C(t)- (Qt=0)- Q) - P(t) - (Q(t) - P'(t=0) - P'() UQ'(t) - P'(t = 0) - P'(t))U

UQ(t—0)- Q) P(t)- (Q'(t—0)-Q'(t) - P'() U Q'(t = 0) - Q'(t) - P'(t)))U
uC(t) - (Qt) - P(t—0)- P(t)- (Q'(t)- P'(t = 0)- P'(t) U Q'(t) - P'(t = 0) - P'(t))U

UQ(t) - P(t—0)- P(t)- (Q(t—0)- Q1) - P'() UQ'(t - 0) - Q' (t) - P'(¢))) = 1.
Suppose that the following initial conditions are fulfilled:
te (*OO, to) :

P(t)=Q(t)=P'(t) =Q'(t) =0.
The choice of these initial conditions leads to some loss of generality, but is necessary
for such a circuit that, in order to count, should start counting with 0.
We get:
t € [to,t1):

C(t)-Q(t—0)-Qt) - P(t)- (Q(t) - P'(t=0)- P'()UQ'(t) - P'(t = 0)- P'(¢)) =1,
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oW = 1,
Q) = Qt-0)=Q(t—0)=0,P@)=1,
P'(t) = P(t-0)=Q'(t)=P(to—0)=0,
tE[tl,tz)l
C()-Q(t) - P(t—0)- P(t) - (Q(t—0)-Q'(t) - P'() uQ'(t = 0) - Q'(¢) - P'(1)) = 1,
o) = o,
P(t) = Pt-0)=Q(t)=Pt1-0)=1,

Q) = QEt-0=Q(t1—0)=0,P'(t)=Q'(t) =1,
te [tz,tg) :
Ct)-Q(t—0)-Qt)-P(t)- (Q(t—0)-Q'(t)- P'(t)uQ'(t—0)-Q'(t)- P'(t)) =1,

cw) = 1,
Qt) = Qt—0)=Q(r—0)=1,P(H)=0,
QW) = QU-0=Qtz-0)=0,P () =QD =1.

te [tg,t4) :
C(t)-Qt)- P(t—0)-P(t)- (Q'(t) - P'(t—0)- P'()UQ'(t)  P'(t—0)- P'(t)) =1,

() 0,
P(t) = P(t—-0)=Q()=P(ts—0)=0,
Pty = P(t-0)=Q()=P(ts—0) =1,
t € [ta,ts)
C(t)-Qt—0)-Q(t)- P(t)- (Q(t)-P'(t—0)- P'(t)UQ'(t)- P'(t = 0) - P'(t)) =1,
cit = 1,
Q) = Qt—0)=Q(ts—0)=0,P(t) =
Pty = P(t—-0)=Q()=P(ts—0)=1,
t € [ts,t6) :
C(t)-Q(t)- P(t—0)-P(t)- (Q(t—0)-Q(t)- P'()uQ'(t—0)-Q'(t)- P'(t)) = 1,
cit) = o,
Pt) = P({t—-0)=Q(t)=P(ts—0) =1,

Q) = QUt—0=Q(ts—0)=1,P'(t)=Q(t) =0,
t € [te,t7) :

C(t)-Q(t = 0)-Q(t) - P(8) - (@t = 0) - Q(1) - P'(H U Q' (t = 0) - Q' (1) - P'(¢)) = 1,

o) = 1,
Qt) = Q—-0)=Q(te—0)=1,P(t) =0,
Q) = QUt-0=Q(t¢—0)=1,P'(t)=Q'(t) =0,

te [t7,t8) :
0 Q0 - U0 PO - (@0 P 0 PHUQ) - Pt —0)- P(1) =1,
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o) = o0,

P(t) = P(t—0)=Q(t)=P(t;—0) =0,
Pl(t) = P(t—0)=Q(t)=P(t;—0) =0,

t € [tg, tg) :

C(t)-Q(t—0)-Qt) - P(t)- (Q(t) P'(t=0)- P'()UQ'(t) - P'(t = 0)- P'(¢)) =1,

cw) = 1,
QW) = QE—0)=Qts—0)=0,P(t) =1,
P(t) = P(t—0)=Qt) = Pts—0) =0,

At this point we stop, because the computation becomes repetitive. We sum-
marize the previous facts in the following table:
t Q(t)
(7007 tO)
to, t1
t1,t2

t)

Q'
0
0
0
0
1
1
1
1
0
0

OO R R OO FRFOO

[to, t1)
[t1,t2)
[t2, t3)
[t3,ta)
[ta,t5)
[t5, t6)
[t6, t7)
[t7,ts)
[ts, to)

Talgl'e 1
‘We have obtained that
2. Q) +2" Q)= Y, C—-0)-C().

mod 4
£€(—o0,t]
In writing the last relation, we have supposed the fact that 0,1 € B are the same
like 0,1 € N; @ represents the units figure while @', the multiple of 2 figure. The

symbol Y sums modulo 4 the number of falling edges of C(t).
mod 4
The circuit in Figure 1 is generalized to an n-bit counter in cascade, counting

modulo 2.

3. The Mealy model of the synchronous circuits

The circuit drawn in Figure 3 is called a Mealy machine, from the name of
G. H. Mealy that has used it for the first time in 1955.
The clock signal satisfies

C(t) = Xto,t1) (1) ® Xita,15) () D X[ty 15) (1) © .

where the sequence tg < t; < ta < ... is unbounded. The given Boolean functions
F:B™ x B¥ - B* G : B™ x B¥ = B" are called the next state function,
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FIGURE 3. The Mealy model

and the output function respectively, such that the circuit is described by the
following equations:

(3.1) D(t) = D(=00 + 0) * X(—o0,t0) (t) & F(u(t), Q1)) - Xjzg,00) (1),
(3.2) Q) = Q(_OO+O)'X(—oo,t1)(t)@D(tl_0)'X[t1,t3)(t)@D(t3_0)'X[tg,t5)(t)@"'

(3.3) 2(t) = (=00 +0) - X(—o0,t0) (1) & G(u(t), Q1)) - X(15,00) (1),
with u € S0, D, Q € S and z € . We substitute (3.2) in (3.1) to get
(34)  D(t) = D(=00+0)  X(—co10) (1) & F(u(t), (=00 +0)) - X[y 1, (1) D
SF (u(t), D(t1 — 0)) - Xpty,¢5)(t) © F(u(t), D(ts — 0)) - Xey,05) (1) S -
and from (3.4) the values
D(t1 = 0) = F(u(t1 — 0), @(—00 +0)),

D(t2i+1 — 0) = F(u(t2i+1 — 0), D(t2i—1 — 0)),i > 1

follow. At this moment we compute the values of Q(t) from (3.2):
Q(to) = Q(—00 +0),

Q(t2i41) = D(t2i+1 — 0),i € N,

and, taking into account (3.3), we get

(to) = G(u(to), Q(to)) = G(ulto), Q=00 +0)),

z(t2i+1) = G(u(tait1), Q(t2i+1)) = G(u(tzit1), D(t2i+1 — 0)),i € N.
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FIGURE 4. The Moore model

4. The Moore model of the synchronous circuits

We have the circuit in Figure 4, called a Moore machine by the name of E.
F. Moore, who introduced it in 1956.
The clock signal is, by definition, of the form
C(t) = Xto,11) (1) ® Xitg,15) () D X[tg,t5) (1) B v
where the sequence tg < t; < ta < ... is unbounded. The circuit makes use of the
functions F : B™ x B¥ — B*, G : B¥ — B" called the next state function and
the output function. The equations are
D(t) = D(=00 +0)  X(—o0,t0) (t) & F(u(t), Q) - Xizy,00) (1),
Q(t) = Q(—00+0) X(—oo,tl)(t) © D(t1 —0)- X[tl,tg)(t) © D(ts —0)- X[t3,t5)(t) D ...
() = 2(=00 4 0) - X(—oo,10) (1) ® G(Q(?)) * Xit9,00) (1),
with v € S, D, Q € S® and x € S™. Like in the previous section we obtain
D(t1 —0) = F(u(t: — 0),Q(—00 + 0)),
D(t2i4+1 — 0) = F(u(t2i+1 — 0), D(t2i—1 — 0)),1 > 1
and eventually
z(to) = G(Q(to)) = G(Q(—00 +0)),
T(t2it1) = G(Q(t2i+1)) = G(D(t2i41 — 0)),i € N.






CHAPTER 16

Applications at delay theory

1. The delay circuit

The symbol of the delay circuit is given in Figure 1. We mention some
possibilities of modeling this circuit that have occurred in Part 2 of the book. In
all these examples u,x € S are the input and the state functions, respectively.

fup unbounded delays (the universal delay):

S.(0),u € 5.(0)

fUD(U) = Sc(l),u S Sc(l)
SuesS\S.

My, dy,

Bh ™4 b ounded delays: 0 <m, <d,,0 <my <d; and the system is
N u(€) < a(t) < U u(g).
geft—d, t—dr+m,] eft—dy,t—dys+my]
g}’;,lf bounded delays, version (upper bounded, lower unbounded delays): d, >
0,ds > 0 and the following system is satisfied

N w®<zm< |J u©.
£€ft—dr,t) §E[t—dy t)

I, fixed delays (ideal delays): for d > 0, the relation between u and x is

x(t) = u(t — d).
The input and the states of fglgd“mf’df, gBL,if, I satisfy u(—o0+0) = x(—oo+

f{[’éf absolute inertia: there are 6, > 0,65 > 0 such that x satisfies

wt—0)-x(t)< [ (),

€[t t+6,]

p(t—0)-z(t)< [ ().

£elt,t+5y]

>

FI1GURE 1. The symbol of the delay circuit

247
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f{[’,&f absolute inertia, version: there are ¢, > 0,6y > 0 such that

zt=0)-z()< () (),

Eeft,t+or)
zt-0)-zt)< () ().
£eftt+6y)
Spotib L :
w1 relative inertia: 0 < g, < 6,0 < pp < 8 are given, such that

2t = 0)-x(t) < N u(§),

EE[t—8,,t—6rtp,]

W-0) < () WO
EE[t—6p,t—65+ny]

8,6 . . .
rp | relative inertia, version: for 6, > 0,67 > 0 we have

w(t=0)-z(t)< () ul®),

‘Ee[tféw“vt)
x(t—0)-z(t) < m u(§).
§E[t—6y.t)
. . . Srsby S Bty 85 16,6 .
The inertia properties f,7°, fu7, ', }‘;I e rp | are added to (are in-
. ridpmig s pdyd :
tersected with) one of fyp, gLD e 5o s 1q. Here are two special cases of

such inteLlifsectiLci)ns. .,
My, Ap M, A f Myp,yar,
BD N fri

system takes the form

2(t—0)-a(t) = 2(t—0)- N u(f),

EE[t—dy t—dr+my)

z(t—0)-z(t) = z(t — 0) - N u(f).

Ee[t—df ,t—df+7nf]

1245 deterministic bounded relative inertial delays: the

g’g/ N ﬁz[d' self-dual deterministic upper bounded lower unbounded relative

inertial delays, consisting in the equation

Da(t) = (z(t = 0) @ u(t—0))- | Dul€) Xptysam)(®);
ge( )

e(t—d,t

where u(—00 + 0) = U|(—oo,ty) = Z|(—o0,to) = T(—00 + 0) take place.
Some of the previous systems satisfy also supplementary conditions of consis-
tency (i.e. the existence of a solution for any w).

2. Circuit with feedback using a delay circuit

The system was drawn in Figure 2. The wires are ideal and all delays have
been concentrated in the delay circuit.
a) fup
We have
S:(0),z € S.(0)
{z|z € fup(x)} ={z|lzr € { S.(1),z€ S.(1) } =85
S,z e S\ S,



2. CIRCUIT WITH FEEDBACK USING A DELAY CIRCUIT 249

I_Ex_

FIGURE 2. Circuit with feedback

b) My dr,my,dy
BD
We suppose that 3ty € R, Z|(—cc,,) = 0. We have the following possibilities.

b.l) df —myg > 0
This implies tg — dy + my < to, thus U x(§) = 0 and, in fact,
E€fto—dys,to—ds+my]

a(t) < U z(§) =0.

gE[t—df,t—df-‘r’an]

Vtzt(h

The unique solution is x = 0.
b.2) df — mf =0
Because z(t) < |J  x(§) is fulfilled by any =, we get that x € fglg’d“mf’df ()
£€[t—df rt]
is equivalent to

(21) N w© <)
c€ft—dy t—dr+m,]
b.2.1) d, >0
We analyze the following situations that represent all the possibilities:
i) z(t) = 0;

ii) z(t) = X[tl,t2)(t) D X[t3,t4)(t) D...0 X[t2k+1,t2k+2)(t)7
where k € N and tp <11 <ty <tz <...<topy1 < tapt2. We compute

(2.2) m z(§) = X[t1+dr,t2+dr—mr)(t)@
¢€lt—dy t—dp+m,]

DX [ts-+dy tatdp—mn) (&) D eoe © X[taps+dy tonsatdn—mn) ()
where, in the right-hand side of (2.2), a term Xp,, | +d, tsis0-+d,—m,)(t) is null if
toiy1 + dp > toipo + dp —my, e if tyi0 — toj1 < my,i € {0,..., k}. For all
i € {0,...,k} with to;41o — to;+1 > m,, (2.1) and (2.2) imply the existence of j €
{#, ..., k}, such that

[t2it1 + dr, taito + dp —my) C [tajq1,t2542);

iil) 2(t) = X1y ,00) (1) t1 > o

iv) z(t) = X[tl,tz)(t) ®..P X[tQHI,tQHz)(t) @ X[t2k+3,oo)(t)7

where k£ € N and tp <1 < t9 < t3 < ... < togqo < topys and the analysis is
made similarly with ii), taking into account that (2.2) is replaced by

(2.3) ﬂ z(§) = X[t1+dr,t2+drfmr)(t) D..0

Ee[tfdrvtfdr‘i’mr]

®X[t2k+1 +dr togyot+dr—m,) (t) ©® X[t2k+3+dry00) (t);

V) () = Xty 10) () D X[tg,0) (1) D oo
where tg < t1 <ty < t3 < ... is unbounded and
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(2.4) m z(§) = X[tl—i-dr,tz-&-dr—mr)(t) @ X[t3+dr,t4+dr—mr)(t) D ...
ceft—dy t—dr+my]

For any ¢ € N with t9;42 — t2;+1 > m,, there is some j > 4 such that
[t2ig1 + drytoipo + dr —my) C [taji1,t2542).

A special case of b.2.1) is the one when m, = 0; (2.1) takes the form
(2.5) x(t —d,) < x(t).
Then, for all i € N, the inclusion

[t2it1 + dr,t2ire +dp) C supp x
is fulfilled. For example, the 'periodical’ functions
z(t) = X[tl,tg)(t) ©® X[t1+dr,t2+dr)(t) ©...® X[t1+kdr,t2+kdr)(t) D ..

where tg < t; < to < t1 + d,., satisfy (2.5) because
T(t—dr) = Xpty 1d, tad,) O BX [ty 424, 12 12d,) () B O X[ty 4 (k1) dy ot (k1)) () D oo

dy 2Oy, 6
glgd“mf s A f;} H1%7 In the case b.2.1), df —my = 0,d, > 0 adds to the
previous requirements the properties

(2.6) x(t—0)-x(t) < N z(§),
EE[t—6pt—6rtp,]
(27) wt=0)-2) < () x(©)

E€[t—6y,t—654py]

implying, if 6, > 0, that x(t) = 0. For §,, = 0, the inequality (2.6) becomes trivial:
z(t —0) - z(t) < x(t). Then, if 65 > 0, the restrictions corresponding to f;}"sr’#f’éf

of the solutions x are expressed under the form (see the hypothesis v))
X{tz,t4,...}(t) =xz(t-0) w <

< m z(§) = X(foo,tﬁ&ffpf)u[tﬁ&f,t3+§f—;Lf)u[t4+5f,t5+5f7pf)u...(t)
§E[t—6y,t—65+puy]

or, equivalently,
{tz,t4,...} C (—OO,tl +6f —uf)U [tz +(5f,t3 +6f —uf)U[t4 +6f,t5 +(5f —p,f)U...

- sty S
&, = 87 = 0 means triviality for fp;"""""".

. o drdpody 87,8
An interesting situation for f57, " N7

0, when the inclusion

is the special case 6, > m,., 65 =

[t2i41 + dp, taip2 + dr —my) C supp x

is true for all ¢ € N and all solutions x from v), the property to; o —to;r1 > 6, > m,
being satisfied due to f57°7.

b.2.2) dp =0

In this case, (2.1) takes the form z(¢) < x(¢) and all z € S with z(—0c0+0) =0

satisfy = € fgl,g’d“’”f’df ().

The situation 3tp € R, x|(_o0t,) = 1 is analyzed in a dual way.

dy.d
c) BD’f
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The system is
N =2©<z0< | =209,
¢€t—dy 1) gelt—dy t)
with d, > 0,dy > 0. Let tx € R be such that V¢t < tp,z(t) = 0. Because
U z(§) = 0, we get V& > to,z(t) < U (¢ = 0. Similarly, let

§€[to—dy to) §E€ft—dy,t)
to € R be such that Vi < ¢p,z(t) = 1. Because N z(&) = 1, we obtain
Ee[tofdw“yt())
Vi >to, 1= [ (&) < x(t). The value ty was arbitrary previously, such that
E€[t—dy,t)

the only solutions x € fg’b‘%f (x) are the constant functions.

On the other hand, the constant functions satisfy trivially any supplementary

N . , : Brtiy b "y
inertial condition ff{[’éf, f{fzéf, w 1‘;]’,‘5’ because z(t — 0) - z(t) = z(t —
0) - z(t) = 0.

d) Iy

The equation to be solved is
z(t) =x(t—d),d > 0.

If d > 0, then the solutions are the two constant functions, while if d = 0, then the

solutions are all the signals.

My, dr,my,dy my,dr,my,dy
e) fBD N fri

The system is

(2.8) 2(t—0) - z(t)

|
8

(t—0)- N 2(€),

E€ft—dy t—drt+m,]

(2.9) x(t—0)-z(t) =zt —0) - m x(§)
E€[t—dy t—ds+my)
and we suppose as before that Jtg € R, x)(_c0,19) = 0.
el)d,>0
The unique solution is z(t) = 0, since xz(t — 0) - z(t) < x(t — d;.).
e2)d.=0
e.2.1) df =mys > 0
The switch from 0 to 1 is possible, because (2.8) takes the trivial form z(¢t — 0)-
z(t) = x(t — 0)-z(t). From this moment on [ (&) is null. Thus the solutions
Eet—dy 1]
have one of the forms z(t) = 0,2(t) = Xy, 00)(t), t1 > to.
e.2.2) df =mysr= 0
All signals z satisfy the system, because (2.8), (2.9) are both trivial.
6.2.3) df > my >0
The switch from 0 to 1 seems possible and let ¢; > ty be the moment of the
first such switch. In other words z(¢; — 0) - #(¢1) = 1. At any time instant t3 > ¢;
characterized by [t1,t2) Csupp x, (2.9) becomes

(2.10) z(ts) = N ().
E€[ta—df ta—ds+my]

For all to —dy+my < t1,ie. if 0 <ty —t; < dy —my, the right-hand side of (2.10)
is 1 and the switch of  from 1 to 0 is necessary. Because z(t1) = x(t; + 0), we
have reached a contradiction showing that (2.8), (2.9) has no solution z(t) # 0.
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—{

FI1GURE 3. The symbol of the logical gate NOT

FIGURE 4. The first model of the NOT gate

FI1GURE 5. The second model of the NOT gate

FIGURE 6. The third model of the NOT gate

The analysis of the situation when Jtg € R, 7|(_c,4o) = 1 is similar.

) dd - pdd
Bp' ' JRI’
The solutions of the equation

Dzx(t) =0

are the constant functions.

3. The logical gate NOT

The logical gate NOT that computes the complement is symbolized like in
Figure 3, where the gate and the two wires are characterized by delays. It is
modeled by any of the circuits in Figures 4, 5, 6, where the logical gate is ideal

(3.1) 2(t) = 2(=00 4 0) - X(—co,10) (1) B V() - Xt9,00) (1),
as well as the wires and the delays are localized in the delay circuits. The modeling
process needs to provide the relationship between x,y and/or between wu,v. The
last step is the elimination (if possible) of the intermediate variables: = in Figure
4, v in Figure 5, v and z in Figure 6. We give some examples.

a) fup Figure 6
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The fact that u is of the form

(3.2) u(t) = u(t) - X(—oo,t0) (1) B ulto) - X[1g,00) (1)
implies, because v € fyp(u), that v is of the form

(3.3) 0(t) = 0(t) - X(—o0,t,) (1) B ulto) - X[1, ,00) (1)-
From (3.1), there is t5 € R such that x is given by

(3.4) z(t) = 2(t) - X(—oo,t2) () B ulto) - X(ty,00)(t)
and y € fup(x) gives the form of y

(3.5) Y(t) = Y(t) - X(—oo,t5) () B u(to) = Xts,00) (t)-

drydf 1o

b) fgp’ Figure 4

There are tg € R,A € B, u € B such that v)(_ce,ty) = A Z|(—o0,te) = Y|(—o0,te) =
w and we have
(3.6) N =©<vy< |J =)

E€t—dyr,t) e(t—dy,t)

From (3.1) we get:
(3.7) () (1 X(—oort0) (©) B V(E) - Xjto,00) () S w(t) <

Ee[tfdrvt)
< U (1 X(—o0.t0) (&) B V() * X[t0.00) (€))-
Ee[tfdf?t)

c) BD,f Figure 5
Jdto € R,3\ € B,3du € B with the property that uj(—coty) = Vj(=o0,t) =
Ay T (—o0,ty) = M- We can write

(3.8) N wo<ot)< J w),
E€t—d,,t) e(t—dy,t)
(3.9) N w©<v®)< |J u (from(3.8)),
eft—dy,t) EE[t—dyr,t)
(3.10) B X (oot B[] 1l€)  Xjtg,00) () < 2(t) <
§E€ft—dy,t)
< X oot W) X)) (from (3.1), (3.9))
Eet—d, t)

d) fBD, ﬂfRI, Figure 4
Jto € R, IN € B, 3u € B, Vj(—c0,t0) = A, T|(—00,t0) = Y|(—o0,te) = M- We obtain

(3.11) 2(t = 0) = 1 X(=o0,t) () D V[t = 0) - X(10,00) (1)~ (from(3.1)),
(3.12) Da(t) = a(t —0) & 2(t) = 11 X(—o0,t0) () BV = 0) - X(t5,00) (1) D
(3.11))

BI - X(—oo,to)(t ) ®o(t) - X[to,00)(t)  (from (3.1),
= 1 Xt} (B) © (= 0) * X(19,00) () ® v(to) - X1t} () @ V() - X(t,00) ()
= (L& v(to))  Xq1y (1) & (v(t—0) & o)) - X(to,00) (1)




254 16. APPLICATIONS AT DELAY THEORY

FIGURE 7. Circuit with feedback
= (LD v(t0)) - Xgt3 (1) B DV(t) - X(19,00) (1),

(3.13) Dy(t) = (y(t—0)@z(t—0)) U Dx(€) Xjty+d,00)(t)  (the hypothesis)
EE(t—d,t)

= (Y(t = 0) D 1 X(—o0,t0](t) DVt = 0) - X(25,00) ()"

U (@ v(to) - X103 (€) B D(E) * X(29,00) (£)) X[to4d,00) (1) (from (3.11), (3.12))
Ee(t—d,t)

:y(t—O)@v(t—O)- U Dv(&) - Xito+d,o0) (£)-

€(t—d,t)

e) fg’]‘_?,, N f}%f, Figure 5
Jto € R, 3N € B, 3 € B, uj(—oo,t9) = V|(—o00,to) = As T|(—o0,ty) = M- The equa-
tions are

(1) 0l X)) = 20 BT Xty (1) (From (3.1)),

(3.15) V(= 0)* X(t,00)(t) = T(t = 0) BT+ X(_oo,0](t)  (from (3.14))

(2t —0) &) - X(—o0,t0) (1) & T(t = 0) - X(19,00) (1),

(3.16) Du(t) = (v(t—0)Du(t—0))- U Du(€) - Xjty+d,00)(t) (the hypothesis),
EE(t—d,t)

(317)  Dr(t) = (18 0(10))  Xqaq) (1) & D(t) - X(gg.00) () (see (3.12))

= (18 0(10) X(10) D (@(E—0)Bu(t=0)) ] Du(€) Xyry 4.0 (1) (From (3.16))
Ee(t—d,t)

= (18 0(10) X1y (NETE—0) Bt —0) | D) Xy a0 () (From (3.15)).
Ee(t d,t)

A comparison between the forms of (3.13) and (3.17) is interesting.
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i x
i
FIGURE 8
i 2 =
FIGURE 9

=
S
=

FIGURE 10

4. Circuit with feedback using a logical gate NOT

The circuit is the one in Figure 7, where the logical gate NOT and the wires
have delays. The way that we model this circuit is described in Figures 8, 9, 10,
where the logical gate and the wires do not have delays and the delays have been
concentrated in the delay circuits. In Figures 8, 9 we have the existence of some
to € R and p € B with the property that

(4.1) u(t) = 1 X (= o0,t0) (1) B ult) - X[tg,00) (1),
(4.2) (1) = 1 X (oo t0) (1) B Ult) - X{19,00) (1),
while in Figure 10 we have, in addition to (4.1), (4.2), the truth of
(4.3) Y1) = 1 X(—o0,t0) (1) DY) - X[tg,00) (£)-

a) fup Figure 8
Suppose that x is of the form

(4.4) 2(t) = 2(8) - X(=o0,t1) () D 2(t1) - Xty ,00) (F)-

From v € fyp(z), this implies that u is of the form

(4.5) u(t) = u(t) - X(—oo,t5) (1) O ult2) - X(t5,00) (1),
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where

(46) :c(tl) = u(tz),

for some t; € R,t2 € R. On the other hand, (4.2),(4.4) and (4.5) show that
(4.7) x(t1) = u(ta).

(4.6) and (4.7) are contradictory, meaning the falsity of the hypothesis (4.4). We
conclude that the circuit is unstable and, instead of (4.4), we can write
(4.8) () = 1" X(—o0,t0) (1) DT Xto,02)(B) D 1 Xty ,0)(B) DT+ Xt (1) B oo
where to < t1 < tg < ... is unbounded.

b) fir Figure 8

(4.9) N z©<uty< |J 2(©
E€t—dy,t) E€t—dy,t)

and if we substitute (4.2) in (4.9) for x = 0 we obtain

(4.10) () wld) Xt () Su®) < | w(©) - Xty 00 (6)-
g€[t—dr,t) g€[t—dy t)

Suppose that the solution of (4.10) is of the form

(4.11) u(t) = X[tl,tg)(t) @ X[tg,t4)(t) D ..y

where tg < t1 < to < t3 < t4 < ... is an unbounded sequence that we try to
characterize in the following. We have

(4.12) () * Xitg.00) () = Xfto.t0) ) B Xt .ty) () & -oes

(4.13) m X[tg,oo) €)= X[thrdr,tl](t) D X[t +d,,t3] ()& ...y
EE[t—dyr,t)

(4.14) U u(§) " X[to,00 )(5) = X(to,t1+df)(t) U X(tz,t3+df)(t) U...
£€[t—dy,t)

and, taking into account (4.11), (4.13), (4.14), the inequality (4.10) becomes

(4.15) [t() + dr,tl] U [tz + dT,tg] U...C [tl,tz) U [t3,t4) U...C

C (to,t1 + df) U (to, ts + df) U
In (4.15) any of the sets [tg + d,, 1], [t2 + d;,t3],... may be empty if to + d, >
ti,t2 + d, > t3,... and any of the sets (to,t1 + dy), (t2,t3 + df), ... may mutually
overlap if t1 +dy > to,t3 +dy > U4, ...
The left inclusion of (4.15) is satisfied if the following properties are fulfilled:
-to+dr >ty ([to+dr t1] =0) or to+d =t1 ([to +dr,t1] = {t1} C [t1,t2)),
-ty +dr >ty ([ta +dr,t3] = 0) or to +d, =tz ([t2 + dr, t3] = {t3} C [t3,t4)),

while the right inclusion of (4.15) is satisfied if the following statements are true:
- t1 > to;
-ty +dyp <ty and ty <ty +dy (Lot +dy) N (Lo, t3 +dy) = 0 and [ty,t2) C
(to,t1 +dy)) or ty +dy > ta ((to,t1 +dy) N (t2,t3 +df) # 0 and [t1,t2) C (to, 1 +
dy) U (ta,ts +dy));



4. CIRCUIT WITH FEEDBACK USING A LOGICAL GATE NOT 257
-t3+dy <tgand ty < t3+dp ((to,t3 +dp) N (ta,ts +dy) =0 and [t3,t4) C

(tz,tg + df)) or ts + df > 1y ((tz,tg + df) n (t4,t5 + df) 7é (0 and [t3,t4) C (tz,tg +
dp) U (ta, t5 + dy)),

i.e. in the unbounded sequence tg < t; < t2 < ... we have

(4.16) Vk € N,topt1 — tor < dp, topyo — tog+1 < dy
The substitution of (4.2) in (4.9), for = 1, gives
(4.17) m X(—o0,t0) (§) ® U(E) * X[tg,00)(§) S ult) <
E€t—dy,t)
< U X(—o0,t0) (§) @ (&) * X[tg,00) (§)
ge[t_dfvt)
with a solution of the form
(4.18) u(t) = X(foo,tg)(t) @ X[tl,t2)(t) @ X[tg,t4)(t) D ..,

where the sequence t) < t1 < to < t3 < ... is unbounded. Eventually we get that
to = t1 and (4.16) is still true.

Adding ff{[’&f to the upper bounded, lower unbounded delay model gives the
minimal length of the 0-pulses, and of the 1-pulses respectively; in (4.11): Vk € N

(4.19) b < togys —tokt2,
b < lokto — bk,
while in (4.18), with ¢ =t1, Vk € N

(4.20) (5f < tok+3 — lag+2,
Or < tokga — topys.

§}75T7“f’5f adds to (4.9) the two requirements
) WO () .
EE[t—6p,t—6r+tu,]
(4.22) u(t = 0)-u(t) < N e

EE[t—87,t—67+1y]
(4.2) with =0 and (4.11) give
(4.23) N =©= N 4 Xuewo©

EE[t—br,t—br+p,] EE[t—br,t—br+p,]
= m (X[to,tl)(f) @ X[tz,tg)(f) & X[t4,t5)(f) ®©...)
EE[t—br,t—br+p,.]

= Xtot6rt14+60—p1,) (E) D Xitats, tat80—p1,) (0) D Xitas, t548,—p,) (1) D -
while inequality (4.21)

u(t —0) - u(t) = X{tl,tg,ts,...}(t) <

< Xitotbrrta+8,—10,) 8) B X(to 46,1546, — 1) (E) B X(tat6,,t5+8,—p,) (£) B oos
is equivalent to

{tl,tg,t5, } C [t0+5T,t1 +5T—,u7,)U[t2 +6,,t3 Jr(Sr*,UJT)U[t4+(5r,t5+(5r*,u7,)U...
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Similarly, from (4.2) with p =0, (4.11) and (4.22), we obtain

{ta,t4,ts,...} C (—00,tg +6f—/1,f)U[t1 +65,12 —i—(Sf—uf)U[tg +6f,t4+6f—p,f)U...
We note that in order for the last inclusions to be true two necessary conditions
are 6, — p, > 0 and 6y — puy > 0 respectively.

Equation (4.18), representing the case = 1 combined with fg}ﬁ““f 01 , leads
to conclusions of the same nature.

c¢) I Figure 10

(4.1), (4.2), (4.3) together with

(4.24) y(t) = a(t — du),

(4.25) u(t) = y(t - ds)

are true where d; > 0,dy > 0. By eliminating u, x, we obtain
(4.26) y(t) = p- X(—oo,t0+d1)(t) Du- X[t0+d1,t0+d1+d2)(t)@

@yt —di —da) - X[to+dy +dz,00) (t).
C.l) di+dy=0
Equation (4.26) is inconsistent.
C.2) di+ds >0
The solution of (4.26) is

(4.27) y(t) =p- X(foo,thrdl)(t) du- X[t0+d1,to+2d1+d2)(t)@

DI X[tg+2dy +dato+3ds+2d2) (E) BT X[t+3dy +2ds to+4dy +3ds) (1) E -

d) ggd“mf’df ﬂfgf’d“mf’df Figure 9
(4.1), (4.2) together with

(4.28) u(t —0) - u(t) = u(t — 0) - N (),
CE[t—dr t—dr+my)
(4.29) w(t —0) - u(t) = u(t —0) - N z(€)

§€[t—df,t—df+mf]

are true, where 0 < m, <d,, 0 <my < dy. By eliminating z, we get

(4.30) u(t = 0)-u(t) = u(t - 0)- N (1 X(=o0.t0) () B UE) X100 (€))

Ce[t—dy t—dr+my)

(4.31) u(t—0)-u(t) = u(t—-0)- N (F* X(—o0,t0) (§) BU(E) * Xty,00) (§))-
Eeft—dy t—dr+my]
We suppose that p = 0.
d.l) dr —my > O,df —mys > 0
Because, in (4.30), we have V¢ € [to,to + d;),u(§) = 0, the implication is
u(to +d,) = 1. Because in (4.31) we have V¢ € [to + d,, to + dr + df),u(§) = 1, we
infer that u(to + d, + dy) = 0 etc. The solution is

(4.32) u(t) = X[to+dr,to+dr+df)(t) @ X[t0+2dr+df,t[)+2dr+2df)(t)@

DX [to+3dy+2d; to+3d,+3d,) (E) D oy
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i.e. from (4.2)
(4.33) o(t) = u(t) - X[to,00) (t) = Xito,tot+ds) ) © Xitotd, +d; tot2d,+ds) ()P
DX [to+2d,+2d; to+3dr+2d,) (E) D -

d2)d, —m, =0o0rdsf —mys=0
We suppose that d, = m, > 0 is true. In this situation, (4.30) is

434)  wlt—0)-u(t) = wt—0) () ul€) X (€)=

Eeft—dr,t]

= w(t=0)- [ w®) " Xg,00)(€) - u(D).
Eeft—dy,t)

For t <ty + d,,u(t) = 0 and at t = tg + d,, we get the contradiction u(ty + d,) =
u(to + dr). The system is inconsistent. The possibilities d, = m, = 0,dy = my >
0,dy = my = 0 give inconsistent systems too.

The situation ;=1 is to be treated similarly.

e) g’g, N fg’Id, Figure 10

(4.1), (4.2), (4.3) together with

(4.35) Dy(t) = (yt—-0) &zt —0)- |J Dr) Xporar,0nt):
EE(t—dq,t)

(4.36) Du(t) = (w(t=0)@y(t—0)- () Dy6) Xigrdso0)(t)
§€(t—dast)

are true, where d; > 0,ds > 0.

Suppose that p = 0. Then (4.36) gives Du(tg) =0, i.e. u(tg) =0.

From (4.2), x(tg) = 1. From (4.35), y becomes 1 at the time instant to + d;.
From (4.36), u becomes 1 at the time instant ¢g + dy 4+ dz2, when in (4.2) x becomes
0. The conclusion is:

(4.37) () = Xito,to+di+dz) ) D X[to+2ds +2ds,to+3dx +3dz) (1) D sy
(4.38) Y(t) = Xfto-+ds to+2ds +da) (F) D Xfto-+3ds+2da,t0+4ds +3ds) (£) B -y
(4.39) U(t) = Xitg-+dy+dato+2d1+2dz) (1) B X[to+3ds+3da,to-+4ds+4d) (1) B -

The situation g =1 is similar.
In this case, the solutions are the same as at ¢), the model I;.

5. A delay line for the falling transitions only

The circuit proposed in Figure 11, reproduced from [14], has the gates and the
wires governed by delays. The model is offered by the circuit in Figure 12, where
all variables that occur are signals, the gates and the wires have no delays and the
delays are concentrated in the delay circuits.

From the static point of view, if we would have had u, z1,y1, ..., 5, ys, 2, w € B,
we note that

(5.1) T3 =Y3 =Tz =Yz = T1,

(52) x5:y5:_4: L =1 T3 =T1 T3,



260 16. APPLICATIONS AT DELAY THEORY

FI1GURE 11. A delay line

FI1GURE 12. The model of the delay line

(5.2) 5.1 __

(5.3) W=z=7T1 Ts T1 I3 = T1 =71 =u,

i.e. the Boolean function that this circuit computes is the identity.

We get back to the general situation when all variables are signals. There are
some t(iR and fig, ..., tg € B such that w)_coty) = Hos Yi|(—00,t0) = Til(—oo,te) =
Myt = 1,5, 2|(Zoo,ty) = W](=o0,te) = Mg and the system of equations and inequalities
is

(5.4) Y1(t) = 11 X(—o0,t0) (1) B u(t) * X[19,00) (£):
(5.5) Y2(t) = o " X(—oo,t0) (1) @ T1(t) * X[t,00) ()
(5.6) Y3(t) = 113 X(—o0,t0) (1) © T2(t) * X[t9,00) ()
(5.7) Ya(t) = ta * X(—ooto) () ® T1(8) - 23(E) - X[1g.00) (1)
(5.8) Ys(t) = 15 X(—o0,t0) (1) @ Ta(t) * X[tg,00) ()
(5.9) 2(t) = tg * X(—oote) () DT1(E) - 25(8) - X[1.00) (1),
(5.10) N w@©<z< | wi©.i=15,
gelt—d,. 1) gelt—dsb)
(5.11) M =©<w< U =@
) celt—dst)
drdy

Thus we use the model fg57," with d, > 0,d; > 0, the parameters that characterize
all six delay circuits. For an easier analysis of the circuit, we make the simplifying



5. A DELAY LINE FOR THE FALLING TRANSITIONS ONLY 261

hypothesis 3 € B, pg = po = prg = pg = 1, g = p3 = pi5 = fi, with which
(5.4),...,(5.9) become

(5.12) y1(t) = u(t),

(5.13) Ya(t) = 21 (t),

(5.14) ys(t) = za(t),

(5.15) ya(t) = w3(t) - 1 (1),

(5.16) ys(t) = wa(t),

(5.17) 2(t) = z5(t) - 21 (t).

We have

(5.18) N n@<a®< [J 0l (equation (510),
£€ft—dr,t) §E[t—dy,t)

(5.19) m w(€) < a(t) < U w(€)  (from (5.12) and (5.18)),

Eeft—d,,t) Eeft—dy,t)

(5.20) N wO<mO< U »© (auaton (5.10)

£€ft—dr,t) §E[t—dy,t)

(5.21) (N =@ <z < | 2200 (from (5.14) and (5.20)),

EEt—d, t) EE€(t—dy,t)
(5.22) m y2(§) < xa(t) < U y2(§)  (equation (5.10)),
E€[t—d, t) eft—dy,t)
(5.23) N n@<zn®< | »© (from(5.22),
£€[t—df,t) ﬁE[t—dT,t)

(5.24) m 21(8) < xa(t) < U x21(§)  (from (5.13) and (5.23)),

‘Ee[tfdfvt) Ee[tfdrvt)

(5.25) (N z(©) <aat) < U 21 (from (5.21) and (5.24)),

geft—d,—dy,t) eft—dr—dy,t)

(5.26) m u(f) < as(t) < U w(€)  (from (5.19) and (5.25)),

gelt—2d,—dy,t) ¢elt—d, —2d;.t)

(5.27) ya(t) = 23(t) - z1(t)  (from (5.15)),

(5.28) N w@- () w@<wn®< u(§) - u(é)
gelt—2d, —dy,t) ¢eft—drt) ¢et—d,—2dy,t) geft—dy,t)
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from (5.26), (5.19) and (5.27). But [t — 2d, — dg,) D [t — dy, 1), [t — dy — 2d,8) D
[t —dy,t) imply

w@< () ),
£e€(t—2d, —dy,t) f€(t—dr,t)
U = U u®,
ge€ft—d, —2dy,t) EE€(t—dy,t)
AEGE u(§) = u(§),
E€ft—2d,—dy,t) E€t—d,,t) E€[t—2d,—dy ,t)
U u©- W= |J u,
geft—d,—2dy ,t) eft—dy,t) e(t—dy,t)
wherefrom (5.28) becomes
(5.29) N w®<wmd< U uw®.
E€ft—2d,—dy,t) eft—dy,t)
Furthermore:
(5.30) ﬂ ys(§) < os(t) < U y5(§)  (equation (5.10)),
g€lt—dy.t) g€ft—dy,t)

(5.31) (N =@ <z < | 2@ (from (5.16) and (5.30)),

E€[t—dnr,t) g€[t—dy )
(5.32) m ya(&) < ay(t) < U ya(§)  (similar with (5.23)),
Eeft—dy,t) E€(t—d.,t)

(5.33) m ya(&) < a5(t) < U y4(§)  (from (5.31) and (5.32)),

eft—d,—dy,t) €ft—dr—dy,t)

(5.34) N w(€) < a5(t) U  u(® (from (5.29) and (5.33)),

£€[t—3d,—2dy,t) E€ft—d, —2dy,t)

IN
IN

(5.35) z(t) = x5(t) -21(t)  (from (5.17)),

(5.36) N u©- << | w® U wo®

£€(t—3d,—2dy,t) feft—d, t) e€ft—d,—2dy,t) Ee(t—dy,t)

from (5.35), (5.34) and (5.19). With arguments like those for (5.28) from (5.36) we
infer

(5.37) N w@<=0< | ul®
£€[t—3d,—2dy,t) Eelt—dy,t)
Thus
(5.38) N wO<00< U wo.
) ¢elt—3d, —2dy 1)
From (5.11) and (5.38) we get
(5.39) N wO<wy< |J  u®.

EElt—dr—dyg,t) £€[t—3d,—3dy,t)
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FIGURE 13. Circuit with transient oscillations

¥ X F =
L| b—{ ——] 2

—

FIGURE 14. The model of the circuit

The conclusion expressed by (5.39) is that the circuit increases the one gate upper
bound of the rising delay from d, to d, + dy and the one gate upper bound of the
falling delay from dy to 3d, + 3dy respectively, i.e. the growth of the falling delay
is bigger than the growth of the rising delay. This justifies the title of the section.

6. Circuit with transient oscillations

In Figure 13 we reproduce an example of circuit from [35]. Its model is drawn
in Figure 14. Like before, in the first figure the two logical gates and the wires have
delays, while in the second, all the delays are concentrated in the delay circuits.
Even if the static analysis of such a circuit, when u, v, z,y, z € B, is not appropriate
due to the feedback loop, we remark that the proposed circuit computes the constant
1 Boolean function because

z=y=u-x-z2=u-v-z=u-u-2=0=1.

The conclusion is that, when w,v,x,y,z € S, after solving the system, we must
obtain tlim z(t) = 1 independently of the choice of u, of the choice of the initial
—00
conditions and of the choice of the type of delays.
We choose fixed delays and we suppose the existence of ty € R, g, tt1, b € B,
such that uj(—co,tg) = Ho,V(—c0,t0) = Tl(=co,te) = H1:Yl(=00te) = 2l(=o0te) = Ha-
The equations are

(6.1) U(t) = 111+ X(=o0,t0) (1) B ut) * X[tg,00) ()

(6.2) x(t) = v(t — d),

(6.3) Y(&) = 2 X(—o0,t0) () B ult) - 2(t) - 2(£) - X[tg,00) (1),
(6.4) 2(t) = y(t —d'),

wherefrom

(6.5) 2(t) = 11+ X(—oort0)(t = d) B ult — d) - Xjgg,00) (t — d) =

= K1 X(—oc0,to+d) (t) @ u(t—d)- X[to+d,00) (t)  (from (6.1), (6.2)),
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FIGURE 15. The solution, case 2kd’ < d < (2k + 1)d’
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FIGURE 16. The solution, case (2k + 1)d’' < d < (2k + 2)d’

(6.6) Y(E) = 19 X(=o0,t0) (1) & (from (6.3), (6.4), (6.5))

Su(t) - (11 * X(—oo,to-+a) (1) O Ut = d) - X1 4.d,00) (1) - Y(E = ') - X 15,00 (£)-
We solve (6.6) in the special case u; = puy = 1 and u(t) = 1. The equation
becomes

(6.7) Y(t) = X(=o0,t0) (1) © X (=00 tg+a) (1) - ¥(t = d') * Xiz9,00) (£)-

The solution of (6.7) is the following
2kd’ < d < (2k + 1)d’ implies

X(foo,tg)(t) D X[t0+d’,tg+2d’)(t) D...
Y(t) = B Xjtot+2h—1)a' to+2ka) () D Xjto+d,00) (D) K =1,
X(—oo,to)(t) @ X[to+d,00) (t)7 k=0

(2k+1)d' < d < (2k + 2)d’ implies

X(—o0,t0) (E) ® Xito+ar to+2a1) (1) D -
Y(t) = D Xjtot k-1’ to+2ka") (1) D X(to+(2h+1)d,00) () B =1,

X(—o0,t0) (1) © Xtg4ar,00) (t): k=0
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- _\\}f* y

"t/
_\'\z* z x* iy
&

_\‘\W* %
o

FiGURE 17. The model of the circuit from Figure 1, page 227

where k € N. In Figures 15 and 16 we have drawn these two functions for to = 0
and k = 1.

The output z(t) of the circuit is obtained from (6.4).

The idea of solving equation (6.6) in other cases, as well as the behavior of the
circuit in Figure 13, are obvious now.

7. Example of C gate

The circuit that we analyze is drawn in Figure 1, page 227, where the logical
gates and the wires have delays and its model is the one in Figure 17, where the
gates and the wires are ideal. There are oy € R and pq,..., 5 € B such that

Uj(—oo,te) = Hos V(=o0,te) = H15 Yl(—oote) = Yl(—ooste) = Has Z[(Zooty) = Zl(—ooste) =

L3, wl*(_oo)to) = W)(—o0,t0) = M4 xl*(—oo,to) = T|(—oo,ty) = M5 and the following
equations

(7.1) Y (1) = Mo+ X(—oo,te)(H) B ult) - v(t) * Xjtg,00) (1),

(7.2) Z7(t) = 113+ X (—o0,t0) (1) B ult) - (£) - X[tg,00) (1)

(7.3) W (E) = g+ X(—oo,te) (B) B 0(E) - 2(8) - X[tg,00) (),

(7.4) (1) = M5 * X(=o0,t0)(t) ® (Y(t) U (1) Uw(?)) - Xjtg,00)(t)

are fulfilled. In order to simplify the analysis, we suppose that p, =y = ... = ps.
In this case (7.1),...,(7.4) become

(7.5) y*(t) = u(t) - v(t),

(7.6) 2" (t) = u(t) - z(t),

(7.7) w*(t) = v(t) - z(b),

(7.8) () = y(t) U z(t) Uw(t).

a) The bounded delay model
(7.9) N ¥ (6 <yt < U ¥ (£),

Ee(t—dy t—dr+my) Ce[t—ds,t—ds+my)
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(7.10) N ZE=<am< U .
Eelt—dy t—dr+m,) eft—dy,t—ds+my]
(7.11) N w*(§) < w(t) < U w(§),
feft—dr t—dr+my] E€ft—dy,t—ds+my]
(7.12) N zt(§) <a(t) < U z*(§),
£E[t—Dr,t—DT+MT] ge[t—Df,t—Df-‘er]

with 0 < m, < d,, 0 <my <dy, 0 < M, <D,, 0< My < Dy while the
consistency conditions are fulfilled under the form: d, > dy —my, dy > d, —m, and
D, > Dy—My, Dy > D,— M, respectively. We have considered that the three AND
gates are identical. We eliminate the intermediate variables y*, z*, w*, y, z, w, x*

(7.8),(7.12)
(7.13) z(t) > N (y(§) U z(&) Vw()) >
£€[t—Dy,t—Dp+M,]
(7.9) .
> N y(&) > N N Y (W) =
£€[t—Dyt—Dp+M,) £€[t—Dy t— D+ M, |we[E—dy,E—dp+m]
/ey (7:5)
= N (€)= N (u(§) - v($)),
E€lt—dr—Dy,t—dr—Dyr+m,e+M,] E€lt—dr—Dy,t—dr—Dyr+m,+M,]
(7.8),(7.12)
(7.14) x(t) < U (y(§) Uz(§) Vw()) =

€(t—Dy,t—Dy+My]
= U (U U 2§ U U w(§) <

§€[t—Dy,t—Dy+My] €€[t—Dyt—Dy+My] €€[t—Dyt—Dy+My]
(7.9),(7.10),(7.11)

< U U  vu

ge[t—Df,t—Df-‘er]wE[g—df,g—df-‘rﬁlf]

U U U 2" (w)U

€€[t—Df,t—Df+Mf]wE[£—df ,§—df+mf]

u U U w*(w) =

E€[t—Dys,t—Dy+Myslwe[—dy,E—ds+my]

= U yH(E) U U ()
§€[t—ds—Dy,t—dg—Dy+mys+My] §€[t—df—Dyt—dy—Dy+mys+My]
U U w*(§) =
§€[t—ds—Dyt—ds—Dy+mys+My]
TR U u(§) - v(§U
§€[t—ds—Dyt—ds—Dy+mys+My]

U U u(€) - z(§)U
§€[t—ds—Dyt—ds—Dp+mys+My]

U U v(€) - x(§) =
Ee[tfdffo,t*df*Dfﬁmeﬁ*Mf]

= U (w(§) - v(&) U (u(§) Uv(§)) - z(§)) <

§€[t—dy—Dy,t—ds—Dy+m+Mjy]
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< U (u(€) - v(§) Vu(§) Uv(§)) =

£€[t—df—Df,t—df—Df-‘r?nf-‘er]

= U (u(€) Vv ().
E€ft—dy—Dyt—ds—Ds+my+My]
Thus, by cumulating (7.13) and (7.14),

N (u(€) - v(§)) < z(t) <

(€[t—dr—Dy t—dr—Dr+my+M;]

< U (u(©) Uv(©)),
¢€lt—d;—Dj,t—d;—Dy+ms+Mj)

: . - M, dy+Dyymp+My,dg+D
we have obtained a system that is very much similar to fng+ Dyt Myodg Dy

b) The deterministic model
We ask that (7.13) and (7.14) be fulfilled together with

(7.15) z(t—0)-x(t) < ﬂ (w(§) - v(€)),
é€lt—dr— Dy t—d— Dytm,.+M,]
(7.16) z(t—0)-x(t) < N u(&) - v(E).

g€t—df—Dy,t—ds—Dy+myp+My]
The system (7.13), (7.14), (7.15), (7.16) represents a deterministic model, similar
to f Elg’d“mf 41 A flg}”d”mf 4t and it is equivalent to

z(t—0)-z(t) =2(—-0)- N (u(§) - v(£)),
(€[t—dr—Dyt—dr—Dr+m,+M,]
2(t—0)-x(t) = x(t —0) - N u(é) - v(f),

£E[t—df—Df,t—df—Df-‘r?nf-‘er]
that is similar to the system (13.1), (13.2) from Ch. 13.
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APPENDIX A

Intersections with temporal logic

The language of the classical logic of the propositions CLP contains the follow-
ing atoms:

- the individual constants 0,1 € B, also called antilogy, respectively tautol-
ogy;

- the Boolean variables A1, ..., Amy ooy fhgs ooy Ly, --- € B, also called proposi-
tional variables.

Intuitively, they represent statements which are either false, or true. So is the
case of the Boolean functions H : B™ — B,B™ 35 (A1, ...; Am) — H(A1, ... Am) €
B, also called formulae of CLP. The connectors of CLP are the laws of B :
—, U, D, ... etec.

The semantics of CLP answers the question: in the interpretation I that assigns
to the n—tuple of variables A = (Aq, ..., \p,) the value \° = ()\?, - )\?n), do we have
H(\%) = 17 If yes, we say that H is satisfied (or that it is valid, or that it holds
true, or that it is true) in 7. We denote this fact by A’ = H. The constant function
H = 1 is identified to the tautology and we write = H (H is satisfied in any
interpretation).

Temporal logic TL, also known as tense logic, uses, in the variant from our
work, the ’frame’ (i.e. couple) (R, <), where R=the set of the real numbers=the
‘set of the possible worlds’=the time set and < that is the order of R. When
we debate what conditions this frame fulfills, it is necessary, or perhaps useful, to
use the algebraic structure of field of R, consistent with <. Due to the axiom of
Archimedes, R satisfies the properties of seriality

Ve, 3t <t

and of density
VeVt b <t = At <t <t

In addition, R satisfies the property of completeness (in the sense of the upper
bound): any subset bounded from above has a least upper bound.

In our TL we have the atoms:

- the individual constants 0,1 € S;

- the pseudo-Boolean variables w1, ..., Uy, -ooy 1y ooy Tpyy oo €5,

called as before antilogy, tautology and propositional variables respec-
tively, that are intuitively considered as statements whose truth varies against
time. The formulae of TL are the functions @ : S(™ x S — § §(m) x §(n) 5
(Upy eony Uy X1y ey Tpy) — DU, evey U, X1y oey ) € S. The first m coordinates of
the argument u = (uq, ..., 4, ), grouped under the name of input, have the role of
stating conditions while the last n coordinates of the argument = = (x1,...,2,),
grouped under the name of state, have the role of obeying the conditions that were
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272 A. INTERSECTIONS WITH TEMPORAL LOGIC

stated by u. The manner in which this obedience takes place is described against
time by the function ®(u, x)(t).

The semantics of TL answers the question: in the interpretation I that as-
signs the value A = (u1,...,Un, 21, ...,T,) to the m + n—tuple of variables A =
(Upy eeny Uy, X1y ey Ty ), dO We have VE € R,@(K)(t) = 17 If the answer is positive,
we use to say that ® is satisfied in I and we denote A E ®. If there is an inter-
pretation I in which ® is satisfied, ® is called the asynchronous system given
under the implicit form. Like in the case of CLP, the constant function ® =1
is identified to the tautology and to the autonomous system S(™) and we denote
= ® (P is satisfied in any interpretation).

The connectors of TL are the laws induced by those of B in .S and those defined
with (] and |J. Let us mention here the traditional connectors of temporal logic
consisting in the deterministic systems (given under the closed form):

G:S—SVueSGu)(t)= () ul)
£€lt,00)
read: ’it is and will always be the case that u’;
F:8—SVYueS,Fu)t) = [J ul
£€[t,00)
read: ’it is or will be the case that u’;
H:S—SVueS Hu)t)= (] ul
‘Ee(foovt]
read: ’it is and has always been the case that u’;
P:S— SYue S Pu)(t) = U u(§)
Ee(foovt]
read: ’it is or has been the case that u’;
S: 5@ =5 vue S swt)= ) w) () ul)
t'€(—o0,t] et 1]
read: 'us has been true since a time when u; was true’;
U:S? - S vues® U@t = |J wt) [
t'€[t,00) et ]

read: 'us will be true until a time when uy will be true’.
In the following 'tempting’ variants of G, F, H, P:

§€(t,00)
Rt = | ue),

§€(t,00)
@)= (1 ue),

§E(—o0t)
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G1(u), F1(u) are signals, while Hy(u), Py(u) are just differentiable. From the vari-

ants of S, U
Siw®) = |J wm)- () ualf),
t'€(—oo,t) e[t/ t]
Uiw)t) = | w®) () ),
t’€(t,00) et ]

the first is differentiable and the last is a signal.
We have added the left limit and the right limit connectors:

L:S— Diff,YueS,L(u)(t) =u(t—0)
read: ’in the recent past, it was always the case that u’;
R:S — Diff,Yue S, R(u)(t) = u(t+0)

read: ’in the next future, it will always be the case that u’, and the semi-derivatives
and the derivatives defined with them.
Other connectors that we have used are:

fi8—8,YueS, flu)t) = N we,
Ee(t—dy t—dr+my]
f:8—SYues, flu)t) = U u(€),

ge€lt—dy,t—ds+my]

f:S—Diff,Yues fut) = |J Dul)
ge(t—d,t)
etc.

A consistency exists between the propositional variables and the conditions on
frames expressed by the fact that: for any w € S there is an unbounded sequence
to < t1 < ta < ... such that u is constant in the intervals (—o0, to), [to,t1), [t1,t2), ..
This was the definition of the signals, whose purpose is, for example, to indicate
the existence of an initial time instant and of L, R. We conclude that even if R is
unbounded from bellow, this property is not necessary in TL. On the other hand,
even if R is dense and complete, for each u time is discrete. The strong possibilities
offered by R are used when choosing ().

An open question is: what is gained and what is lost when considering the two
possibilities, real time versus discrete time (the time set equal to N). This problem
is not trivial at all. Even if things do not look attractive, we have asked sometimes
if instead of R, why can’t Q be used as time set and which is exactly the role of
the completeness of R (making the difference between the two sets) in this work.






APPENDIX B

Index

A

absolute inertia property, Definition 115, page 193

absolutely constantly stable pseudo-system, Definition 27, page 24

- inertial delay, Definition 116, page 193

- inertial delay induced by a system, Definition 117, page 194

- race-free stable pseudo-system, Definition 26, page 24

- stable pseudo-system, Definition 25, page 24

access time of the states to a value, Definition 71, page 103

accessibility of a system, Definition 84, page 126

asynchronous pseudo-system, Definition 20, page 22

- system, Definition 37, page 29

autonomous system, Definition 51, page 61

B

binary Boole (or Boolean) algebra, Definition 1, page 3

Boolean function, Definition 3, page 4

bounded delay, Definition 111, page 176 and Definition 114, page 189

- delay, informal Definition 100, page 164

- initial time of a pseudo-system, Definition 29, page 25

- final time of a pseudo-system, Definition 32, page 25

boundedness property, Definition 110, page 176 and Definition 113, page 189

bounds of the transport delays, Definition 110, page 176 and Definition 113,
page 189

C

Cartesian product of functions, Definition 17, page 20

- product of sets of subsets of spaces of functions, Definition 19, page 20

- product of spaces of functions, Definition 18, page 20

- product of two systems, Definition 42, page 37

characteristic function of a set, Notation 3, page 4

consistent sequence with a function, Definition 9, page 5

complement of a system, , Definition 45, page 45

consistency condition of the bounded delays, Definition 109, page 176

constant final state Definition 27, page 24

- initial state, Definition 24, page 24

co-signal, Definition 15, page 12

D

delay (condition), Definition 107, page 168

deterministic system, Definition 53, page 64

differentiable function, Definition 10, page 5

dual function of a Boolean function, Definition 4, page 4
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- system of a system, Definition 40, page 34

F

final state function of a pseudo-system, Definition 35, page 28

- value of a function, Definition 14, page 10

final states, Definition 25, page 24

finite system, Definition 53, page 64

fixed final time of a pseudo-system, Definition 33, page 26

- initial time of a pseudo-system, Definition 30, page 25

fixed delay, Definition 112, page 187

- delay, informal Definition 101, page 164

fundamental (operating) mode of a system, Definition 93, page 148

- (operating) mode of a system relative to a Boolean function, Definition 96,
page 157

H

hazard-free transfer, Definition 91, page 142

Huffman systems, page 96

I

ideal combinational system, Definition 54, page 67

- delay, informal Definition 102, page 165 and Definition 112, page 187

- latch, Definition 122, page 224

inertial delay (number), informal Definition 98, page 163

- delay (model), informal Definitions 103, 104, 105, page 165 and Definition
112, page 187

initial fundamental transfer, Definition 88, page 142

- state function of a pseudo-system, Definition 34, page 28

- states, Definition 22, page 24

- value of a function, Definition 14, page 10

injective system, Definition 67, page 91 and Definition 68, page 92

intersection of two systems, Definition 46, page 46

inverse of a system, Definition 41, page 36

isomorphic systems, Definition 49, page 58

L

left continuous function, Definition 13, page 9

- derivative, Definition 16, page 12

- limit, Definition 11, page 7

- semi-derivative, Definition 16, page 12

M

monotonous function, Definition 7, page 5

morphism of systems, Definition 48, page 56

N

necessarily surjective system, Definition 83, page 122

non-anticipatory system, Definition 63 page 79, Definition 64 page 85, Defini-
tion 65, page 88

- system relative to a Boolean function, Definition 95, page 157

non-anticipatory* system, Definition 66, page 90

non-initial fundamental transfer, Definition 89, page 142

P

parallel connection of two systems, Definition 43, page 40
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possible surjective system, Definition 82, page 121

prefix of a function, Definition 94, page 153

pulse, Definition 12, page 9

pure delay, informal Definition 102, page 165 and Definition 112, page 187

R

race-free final states, Definition 26, page 24

- initial states, Definition 23, page 24

relative inertia property, Definition 119, page 205

relatively constantly stable system, Definition 86, page 134

- inertial delay, Definition 120, page 207

- inertial delay induced by a delay, Definition 121, page 208

- race-free stable system, Definition 86, page 134

- stable system, Definition 86, page 134

union of the transitions, Definition 74, page 109

- of two systems, Definition 47, page 52

right continuous function, Definition 13, page 9

- derivative, Definition 16, page 12

- limit, Definition 11, page 7

- semi-derivative, Definition 16, page 12

S

self-dual Boolean function, Definition 55, page 70

- space of functions, Definition 56, page 70

- system, Definition 57, page 70

serial connection of two systems, Definition 44, page 41

set invariant to permutations, Definition 59, page 73

- invariant to translations, Definition 61, page 75

- of accessible values of a system, Definition 69, page 101

- of final states of a pseudo-system, Definition 35, page 28

- of initial states of a pseudo-system, Definition 34, page 28

- of the couples of consecutive accessible values of a system, Definition 72, page
106

signal, Definition 15, page 12

strongly synchronous system, Definition 79, page 116

subdelay, Definition 108, page 168

subsystem, Definition 39, page 32

support set of a function, Definition 5, page 4

- set of a system, Definition 36, page 29

surjective system, Definition 81, page 119

symmetrical Boolean function, Definition 58, page 73

- system, Definition 60, page 73

synchronous transfer, Definition 77, page 111

system constantly stable relative to a function, Definition 87, page 135

- induced by a pseudo-system, Definition 38, page 30

- race-free stable relative to a function, Definition 87, page 135

- stable relative to a function, Definition 87, page 135

T

time invariant system, Definition 62, page 76

transfer, Definition 76, page 110
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transport delay, informal Definition 97, page 163
trivial fundamental transfer, Definition 90, page 142
U

unbounded delay, informal Definition 99, page 163

- final time of a pseudo-system, Definition 31, page 25
- initial time of a pseudo-system, Definition 28, page 25
universal delay, Definition 106, page 166

Z

Zeno system, Definition 118, page 202

\%\%

weakly synchronous system, Definition 79, page 116



APPENDIX C

List of notations

B, Definition 1, page 3

N aj, U a;, Definition 2, page 3

jeJ jeJ

X, Notation 1, page 3

P(A), P*(A), Notation 2, page 3

F*, Definition 4, page 4

X 4, Notation 3, page 4

supp x, Definition 5, page 4

ﬂ,/Notation 4, page 4

Seq, Definition 8, page 5

Diff, Notation 5, page 5

x(t — 0),z(t + 0), Definition 11, page 7

§*, g, Notation 6, page 9

tlim z(t), z(—o0 +0), lim z(t), 2(c0 — 0), T|(—co,te)s T|[t;,00), Definition 14,

——00 t—o0
page 10

S*, 8% S, S., Notation 7, page 11

Seq, Seq*, Notation 8, page 12

Doz, Dioz, Dy, Dig, Dx, D*x, Definition 16, page 12

Dif ™ page 19

:S’v*(”), 5(")7 page 19

S g™ ) (M hage 19

¢0, Oo, Definition 34, page 28

¢, O, Definition 35, page 28

Uy, Definition 36, page 29

[f], Notation 12, page 30

fu, Example 20, page 32

u, Notation 14, page 33

U™, Notation 15, page 33

f*, Definition 40, page 34

f~1, Definition 41, page 36

f x f', Definition 42, page 37

(f, f1), Definition 43, page 40

h o f, Definition 44, page 41

Cf, Definition 45, page 45

f N g, Definition 46, page 46

f U g, Definition 47, page 52

t

| f, Example 30, page 64
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C. LIST OF NOTATIONS

0, F, Example 31, page 65
Fy, Notation 17, page 67
S({1,...,m}), Notation 19, page 73
Ao, Notation 20, page 73
us, Notation 21, page 73
S(S’”), Notation 22, page 83
Huf f, page 96
Q, ©g, 0%, R, Qs, O, Of,, O}, Rs, Qss Definition 69, page 101
Eq, Definition 70, page 102
T}, Definition 71, page 103
Q202,921 06(,..., 0 ® Qs , Definition 72, page 106
~"V ~", Definition 74, page 109
Ty 2, Definition 75, page 109
WS = 1", Definition 76, page 110
0 ®Q, 0} ® O, O} ® 0}, O} ® R, ©) ® Qs, Definition 85, page 128
lim f, page 132
f*, page 132
Sgy?, Notation 23, page 135
i) ', Definition 88, page 142
', Definition 89, page 142
1 = p, Definition 90, page 142

uo—oct ult t uot t ult t
(0 "=y v S ), (S ) v (S W), Definition 92,

Uilto,t1)
—

page 147

uy, , Definition 94, page 153
S.(A), Notation 24, page 166
fup, Definition 106, page 166
14,1, Example 95, page 170
CCBpp, Definition 109, page 176

%‘lg;d””f’df, Definition 110, page 176
A f

5D » Definition 113, page 189
f{[’&f, Definition 115, page 193

Il;j’&r’#f’éf, Definition 119, page 205

frr, Definition 122, page 224



