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Abstract The asynchronous systems are the non-deterministic models of the asynchronous

circuits from the digital electrical engineering. In the autonomous version, such

a system is a set of functions x : R → {0, 1}n called states (R is the time set).

If an autonomous asynchronous system is defined by making use of a so called

generator function Φ : {0, 1}n → {0, 1}n, then it is called regular. The regular

autonomous asynchronous systems compute in real time the iterates of Φ when

these are not made, in general, on all the coordinates Φ1, ..., Φn simultaneosly.

The property of universality means the greatest in the sense of the inclusion.

The purpose of the paper is that of defining and of characterizing the fixed

points, the equivalencies and the dynamical bifurcations of the universal regu-

lar autonomous asynchronous systems. We use analogies with the dynamical

systems theory.
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1. INTRODUCTION

Switching theory, more precisely: what we mean by switching theory, has

been practiced in the 50’s and the 60’s by many mathematicians, in dialogue

with engineers. The last book from this series was published by Moisil in 1969

??. After 1970, the theory of modeling the asynchronous circuits from the

digital electrical engineering has developed in a manner suggesting that the

main interest of the researchers is to keep away their works from publication.

In this context, we have started some years ago the construction of a theory of
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modeling the asynchronous circuits under the name of asynchronous systems

theory. A part of this theory, related with the universal regular autonomous

asynchronous systems is presented in this paper. The bibliography that we

indicate consists in works on dynamical systems (written as usual on real

numbers, we use binary numbers here) that create analogies. They are not

relevant to the readers that are familiar with the concepts of orbit, nullclin,

dynamical bifurcation etc, except for showing the source of inspiration of the

construction. The paper is obviously self-contained.

2. PRELIMINARIES

Definition 2.1. We denote by B = {0, 1} the binary Boole algebra, en-

dowed with the discrete topology and with the usual laws.

Definition 2.2. Let be the Boolean function Φ : Bn → Bn,Φ = (Φ1, ...,Φn)

and ν ∈ Bn, ν = (ν1, ..., νn). We define Φν : Bn → Bn by ∀µ ∈ Bn,

Φν(µ) = (ν1 · µ1 ⊕ ν1 · Φ1(µ), ..., νn · µn ⊕ νn · Φn(µ)).

Remark 1. Φν represents the function resulting from Φ when this one is not

computed, in general, on all the coordinates Φi, i = 1, n : if νi = 0, then Φi is

not computed, Φν
i (µ) = µi and if νi = 1, then Φi is computed, Φν

i (µ) = Φi(µ).

Definition 2.3. Let be the sequence α0, α1, ..., αk, ... ∈ Bn. The functions

Φα0α1...αk
: Bn → Bn are defined iteratively by ∀µ ∈ Bn,∀k ∈ N,

Φα0α1...αkαk+1
(µ) = Φαk+1

(Φα0α1...αk
(µ)).

Definition 2.4. The sequence α0, α1, ..., αk, ... ∈ Bn is called progressive if

∀i ∈ {1, ..., n}, the set {k|k ∈ N, αk
i = 1} is infinite.

The set of the progressive sequences is denoted by Πn.

Remark 2.1. Let be µ ∈ Bn. When α = α0, α1, ..., αk, ... is progressive,

each coordinate Φi, i = 1, n is computed infinitely many times in the sequence

Φα0α1...αk
(µ), k ∈ N.

Definition 2.5. The initial value, denoted by x(−∞+0) or lim
t→−∞x(t) ∈ Bn

and the final value, denoted by x(∞− 0) or lim
t→∞x(t) ∈ Bn of the function
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x : R → Bn are defined by

∃t′ ∈ R, ∀t < t′, x(t) = x(−∞+ 0),

∃t′ ∈ R, ∀t > t′, x(t) = x(∞− 0).

Definition 2.6. The function x : R → Bn is called (pseudo)periodical with

the period T0 > 0 if

a) lim
t→∞x(t) does not exist and

b) ∃t′ ∈ R, ∀t ≥ t′, x(t) = x(t + T0).

Definition 2.7. The characteristic function χA : R → B of the set A ⊂ R

is defined in the following way:

χA(t) =

{
1, if t ∈ A

0, otherwise
.

Notation 2.1. We denote by Seq the set of the real sequences t0 < t1 < ... <

tk < ... which are unbounded from above.

Remark 2.2. The sequences (tk) ∈ Seq act as time sets. At this level of

generality of the exposure, a double uncertainty exists in the real time itera-

tive computations of the function Φ : Bn → Bn : we do not know precisely

neither the coordinates Φi of Φ that are computed, nor when the computation

happens. This uncertainty implies the non-determinism of the model and its

origin consists in structural fluctuations in the fabrication process, the varia-

tions in ambiental temperature and the power supply etc.

Definition 1. A signal (or n−signal) is a function x : R → Bn of the form

x(t) = x(−∞+ 0) · χ(−∞,t0)(t)⊕ x(t0) · χ[t0,t1)(t)⊕ ... (1)

...⊕ x(tk) · χ[tk,tk+1)
(t)⊕ ...

with (tk) ∈ Seq. The set of the signals is denoted by S(n).

Remark 2. The signals x ∈ S(n) model the electrical signals from the digital

electrical engineering. They have by definition initial values and they avoid

’Dirichlet type’ properties (called Zeno properties by the engineers) such as

∃t ∈ R,∀ε > 0, ∃t′ ∈ (t− ε, t), ∃t′′ ∈ (t− ε, t), x(t′) 6= x(t′′),
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∃t ∈ R, ∀ε > 0,∃t′ ∈ (t, t + ε),∃t′′ ∈ (t, t + ε), x(t′) 6= x(t′′)

because these properties cannot characterize the inertial devices.

We can interpret now Definition 2.6 of (pseudo)periodicity in the situation

when x ∈ S(n). If at b) we would have had ∀t ∈ R, x(t) = x(t + T0), then the

existence of x(−∞ + 0) implies that x is constant. Similarly, if a) would be

false, then x would be constant. In other words Definition 2.6 was formulated

in a way that makes us work with non-constant functions, a request of non-

triviality.

Notation 2.2. We denote by P ∗ the set of the non-empty subsets of a set.

Definition 2.8. The autonomous asynchronous systems are the non-

empty sets X ∈ P ∗(S(n)).

Example 2.1. We give the following simple example that shows how the au-

tonomous asynchronous systems model the asynchronous circuits. In Figure

1 we have drawn the (logical) gate NOT with the input u ∈ S(1) and the state

Fig. 1. Circuit with the logical gate NOT.

(the output) x ∈ S(1). For λ ∈ B and

u(t) = λ,

the state x represents the computation of the negation of u and it is of the

form

x(t) = µ · χ(−∞,t0)(t)⊕ λ · χ[t0,t1)(t)⊕ λ · χ[t1,t2)(t)⊕ ...⊕ λ · χ[tk,tk+1)
(t)⊕ ...

= µ · χ(−∞,t0)(t)⊕ λ · χ[t0,∞)(t),

where µ ∈ B is the initial value of x and (tk) ∈ Seq is arbitrary. As we can

see, x depends on t0, µ, λ only and it is independent on t1, t2, ...
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Fig. 2. Circuit with feedback with the logical gate NOT.

In Figure 2, we have

x(t) = µ · χ(−∞,t0)(t)⊕ µ · χ[t0,t1)(t)⊕ µ · χ[t1,t2)(t)⊕ ...

⊕µ · χ[t2k,t2k+1)
(t)⊕ µ · χ[t2k+1,t2k+2)

(t)⊕ ...

thus this circuit is modeled by the autonomous asynchronous system

X = {µ · χ(−∞,t0)(t)⊕ µ · χ[t0,t1)(t)⊕ µ · χ[t1,t2)(t)⊕ ...

⊕µ · χ[t2k,t2k+1)
(t)⊕ µ · χ[t2k+1,t2k+2)

(t)⊕ ...|µ ∈ B, (tk) ∈ Seq} ∈ P ∗(S(1)).

Definition 2.9. The progressive functions ρ : R → Bn are by definition

the functions

ρ(t) = α0 · χ{t0}(t)⊕ α1 · χ{t1}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ... (2)

where (tk) ∈ Seq and α0, α1, ..., αk, ... ∈ Πn. The set of the progressive func-

tions is denoted by Pn.

Definition 2.10. For Φ : Bn → Bn and ρ ∈ Pn like at (2), we define Φρ :

Bn ×R → Bn by ∀µ ∈ Bn, ∀t ∈ R,

Φρ(µ, t) = µ ·χ(−∞,t0)(t)⊕Φα0
(µ) ·χ[t0,t1)(t)⊕ ...⊕Φα0...αk

(µ) ·χ[tk,tk+1)
(t)⊕ ...

Remark 2.3. The previous equation reminds the iterations of a discrete time

real dynamical system. The time is not exactly discrete in it, but some sort

of intermediate situation occurs between the discrete and the real time; on the

other hand the iterations of Φ do not happen in general on all the coordinates

(synchronicity), but on some coordinates only, such that any coordinate Φi is
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computed infinitely many times, i = 1, n (asynchronicity) when t ∈ R. This

is the meaning of the progress property, giving the so called ’unbounded delay

model’ of computation of the Boolean functions.

3. DISCRETE TIME

Notation 3.1. We denote by

N = N ∪ {−1}

the discrete time set.

Definition 3.1. Let be Φ : Bn → Bn and α ∈ Πn, α = α0, ..., αk, ... We define

the function Φ̂α : Bn ×N → Bn by ∀(µ, k) ∈ Bn ×N ,

Φ̂α(µ, k) =

{
µ, k = −1,

Φα0...αk
(µ), k ≥ 0

.

Notation 3.2. Let us denote

Π̂n = {α|α ∈ Πn, ∀k ∈ N, αk 6= (0, ..., 0)}.

Definition 3.2. The equivalence of ρ, ρ′ ∈ Pn is defined by: ∃(tk) ∈ Seq,∃(t′k) ∈
Seq, ∃α ∈ Π̂n such that (2) and

ρ′(t) = α0 · χ{t′0}(t)⊕ α1 · χ{t′1}(t)⊕ ...⊕ αk · χ{t′k}(t)⊕ ...

are true.

Definition 3.3. The ’canonical surjection’ s : Pn → Π̂n is by definition the

function ∀ρ ∈ Pn,

s(ρ) = α

where α ∈ Π̂n is the only sequence such that (tk) ∈ Seq exists, making the

equation (2) true.

Remark 3.1. The relation between the continuous and the discrete time is

the following: for any µ ∈ Bn and any ρ ∈ Pn, the sequences α ∈ Π̂n and

(tk) ∈ Seq exist making the equation (2) true and we have

Φρ(µ, t) = Φ̂α(µ,−1) · χ(−∞,t0)(t)⊕ Φ̂α(µ, 0) · χ[t0,t1)(t)⊕ ...
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...⊕ Φ̂α(µ, k) · χ[tk,tk+1)
(t)⊕ ...

Equivalent progressive functions ρ, ρ′ ∈ Pn (i.e. s(ρ) = s(ρ′)) give ’equivalent’

functions Φρ(µ, t), Φρ′(µ, t) in the sense that the computations Φ̂α(µ, k), k ∈
N− are the same ∀µ ∈ Bn, but the time flow is piecewise faster or slower in

the two situations.

4. REGULAR AUTONOMOUS ASYNCHRONOUS

SYSTEMS

Definition 4.1. The universal regular autonomous asynchronous sys-

tem ΞΦ ∈ P ∗(S(n)) that is generated by the function Φ : Bn → Bn is defined

by

ΞΦ = {Φρ(µ, ·)|µ ∈ Bn, ρ ∈ Pn}.

Definition 4.2. An autonomous asynchronous system X ∈ P ∗(S(n)) is called

regular, if Φ exists such that X ⊂ ΞΦ. In this case Φ is called the generator

function of X.

Remark 4.1. 1. The terminology of ’generator function’ is also used in [1],

meaning the vector field of a discrete time dynamical system. In [3] the termi-

nology of ’generator’ (function) of a dynamical system is mentioned too. Moisil

called Φ ’network function’ in a non-autonomous, discrete time context; for

Moisil, ’network’ means ’system’ or ’circuit’.

2. In the last two definitions, the attribute ’regular’ refers to the existence

of a generator function Φ and the attribute ’universal’ means maximal relative

to the inclusion.

For a regular system, Φ is not unique in general.

Example 4.1. For any µ0 ∈ Bn and ρ∗ ∈ Pn, the autonomous systems

{Φρ∗(µ0, ·)}, {Φρ(µ0, ·)|ρ ∈ Pn}, {Φρ∗(µ, ·)|µ ∈ Bn} and ΞΦ are regular.

For Φ = 1Bn , the system Ξ1Bn = {µ|µ ∈ Bn} = Bn is regular and we have

identified the constant function x ∈ S(n), x(t) = µ with the constant µ ∈ Bn.

Another example of universal regular autonomous asynchronous system is

given by Φ = µ0, the constant function, for which Ξµ0 = {x|xi = µi ·χ(−∞,ti)⊕
µ0

i · χ[ti,∞), µi ∈ B, ti ∈ R, i = 1, n}.
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Remark 4.2. These examples suggest several possibilities of defining the sys-

tems X ⊂ ΞΦ which are not universal. For example by putting appropriate

supplementary requests on the functions ρ, one could rediscover the ’bounded

delay model’ of computation of the Boolean functions. If ρ is fixed, we get the

’fixed delay model’ of computation of the Boolean functions.

5. ORBITS AND STATE PORTRAITS

Definition 5.1. Let be ρ ∈ Pn. Two things are understood by orbit, or (state,

or phase) trajectory of ΞΦ starting at µ ∈ Bn:

a) the function Φρ(µ, ·) : R → Bn;

b) the set Orρ(µ) = {Φρ(µ, t)|t ∈ R} representing the values of the previous

function.

Sometimes the function from a) is called the motion (or the dynamic) of

µ through Φρ.

Definition 5.2. The equivalent properties

∃t ∈ R, Φρ(µ, t) = µ′

and

µ′ ∈ Orρ(µ)

are called of accessibility; the points µ′ ∈ Orρ(µ) are said to be accessible.

Remark 5.1. The orbits are the curves in Bn, parametrized by ρ and t. On

the other hand ρ ∈ Pn, t′ ∈ R imply ρ · χ(t′,∞) ∈ Pn and we see the truth of

the implication

µ′ = Φρ(µ, t′) =⇒ ∀t ≥ t′, Φρ(µ, t) = Φρ·χ(t′,∞)(µ′, t).

Definition 5.3. The state (or the phase) portrait of ΞΦ is the set of its

orbits.
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Example 5.1. The function Φ : B2 → B2 is defined by the following table

(µ1, µ2) Φ(µ1, µ2)

(0, 0) (0, 0)

(0, 1) (1, 0)

(1, 0) (1, 1)

(1, 1) (1, 1)

The state portrait of ΞΦ is:

{(0, 1) · χ(−∞,t0) ⊕ (0, 0) · χ[t0,∞)|t0 ∈ R}∪

∪{(0, 1) · χ(−∞,t0) ⊕ (1, 0) · χ[t0,t1) ⊕ (1, 1) · χ[t1,∞)|t0, t1 ∈ R, t0 < t1}∪
∪{(0, 1) · χ(−∞,t0) ⊕ (1, 1) · χ[t0,∞)|t0 ∈ R}∪

∪{(1, 0) · χ(−∞,t0) ⊕ (1, 1) · χ[t0,∞)|t0 ∈ R} ∪ {(0, 0)} ∪ {(1, 1)}.
This set is drawn in Figure 3,

Fig. 3. The state portrait of the system from Example 5.1.

where the arrows show the increase of time. One might want to put arrows

from (0, 0) to itself and from (1, 1) to itself.

6. NULLCLINS

Definition 6.1. Let be Φ : Bn → Bn. For any i ∈ {1, ..., n}, the nullclins of

Φ are the sets

NCi = {µ|µ ∈ Bn, Φi(µ) = µi}.
If µ ∈ NCi, then the coordinate i is said to be not excited, or not enabled,

or stable and if µ ∈ Bn \ NCi then it is called excited, or enabled, or

unstable.
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Remark 6.1. Sometimes, instead of indicating Φ by a table like previously,

we can replace Figure 3 by Figure 4,

Fig. 4. The state portrait of the system from Example 5.1, version.

where we have underlined the unstable coordinates. For example in Figure

4, (0, 1) means that Φ(0, 1) = (1, 0), (1, 0) means that Φ(1, 0) = (1, 1) etc.

In fact Figure 4 results uniquely from Figure 3, one could know by looking

at Figure 3 which coordinates should be underlined and which should be not.

For example the existence of an arrow from (0, 1) to (1, 0) shows that in (0, 1)

both coordinates are enabled.

7. FIXED POINTS. REST POSITION

Definition 7.1. A point µ ∈ Bn that fulfills Φ(µ) = µ is called a fixed point

(an equilibrium point, a critical point, a singular point), shortly an

equilibrium of Φ. A point that is not fixed is called ordinary.

Theorem 7.1. The following statements are equivalent for µ ∈ Bn :

Φ(µ) = µ, (3)

∃ρ ∈ Pn,∀t ∈ R, Φρ(µ, t) = µ, (4)

∀ρ ∈ Pn,∀t ∈ R, Φρ(µ, t) = µ, (5)

∃ρ ∈ Pn, Orρ(µ) = {µ}, (6)

∀ρ ∈ Pn, Orρ(µ) = {µ}, (7)

µ ∈ NC1 ∩ ... ∩NCn. (8)
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Proof. (3)=⇒(4) We take ρ ∈ Pn in the following way

ρ(t) = (1, ..., 1) · χ{t0}(t)⊕ ...⊕ (1, ..., 1) · χ{tk}(t)⊕ ...

with (tk) ∈ Seq. For the sequence

∀k ∈ N, αk = (1, ..., 1)

from Πn we can prove by induction on k that

∀k ∈ N, Φα0...αk
(µ) = µ (9)

wherefrom

Φρ(µ, t) = µ · χ(−∞,t0)(t)⊕ µ · χ[t0,t1)(t)⊕ ...⊕ µ · χ[tk,tk+1)
(t)⊕ ... = µ (10)

(4)=⇒(3) From (4) we have the existence of α ∈ Πn and (tk) ∈ Seq with

the property that (10) is true, thus (9) is true. We denote

I0 = {i|i ∈ {1, ..., n}, α0
i = 1},

I1 = {i|i ∈ {1, ..., n}, α1
i = 1},

...

Ik = {i|i ∈ {1, ..., n}, αk
i = 1},

...

and we have from (9):

∀i ∈ {1, .., n},

Φα0

i (µ) =

{
Φi(µ), i ∈ I0

µi, i ∈ {1, ..., n} \ I0

= µi;

∀i ∈ {1, .., n}, Φα0α1

i (µ) = Φα1

i (Φα0
(µ)) =

= Φα1

i (µ) =

{
Φi(µ), i ∈ I1

µi, i ∈ {1, ..., n} \ I1

= µi;

...

∀i ∈ {1, .., n}, Φα0α1...αk

i (µ) = Φαk

i (Φα0...αk−1
(µ)) =

= Φαk

i (µ) =

{
Φi(µ), i ∈ Ik

µi, i ∈ {1, ..., n} \ Ik

= µi;
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...

with the conclusion that

∀k ∈ N, ∀i ∈ I0 ∪ I1 ∪ ... ∪ Ik,Φi(µ) = µi.

As α is progressive, some k′ ∈ N exists with the property that

I0 ∪ I1 ∪ ... ∪ Ik′ = {1, ..., n},

thus (3) is true.

(3)=⇒(5) Let be

ρ(t) = α0 · χ{t0}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ... (11)

with α0, ..., αk, ... ∈ Πn and (tk) ∈ Seq arbitrary. It is proved by induction on

k the validity of (9) and this implies the truth of (10).

(5)=⇒(3) This is true because (5)=⇒(4) and (4)=⇒(3) are true.

(4)⇐⇒(6) and (5)⇐⇒(7) are obvious.

(3)⇐⇒(8) Φ(µ) = µ ⇐⇒ Φ1(µ) = µ1 and...and Φn(µ) = µn ⇐⇒ µ ∈ NC1

and...and µ ∈ NCn ⇐⇒ µ ∈ NC1 ∩ ... ∩NCn.

Definition 2. If Φ(µ) = µ, then ∀ρ ∈ Pn, the orbit Φρ(µ, t) = µ is called rest

position.

8. FIXED POINTS VS. FINAL VALUES OF THE

ORBITS

Theorem 8.1. ([8], Theorem 49) The following fixed point property is true

∀µ ∈ Bn,∀µ′ ∈ Bn,∀ρ ∈ Pn, lim
t→∞Φρ(µ, t) = µ′ =⇒ Φ(µ′) = µ′.

Proof. Let µ ∈ Bn, µ′ ∈ Bn, ρ ∈ Pn be arbitrary and fixed. Some t′ ∈ R exists

such that ∀t ≥ t′,

µ′ = Φρ(µ, t) Remark 5.1= Φρ·χ(t′,∞)(µ′, t).

Because ∀t < t′,

Φρ·χ(t′,∞)(µ′, t) = Φ(0,...,0)(µ′, t) = µ′,

from Theorem 7.1, (4)=⇒(3) we have that Φ(µ′) = µ′.
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Remark 3. Theorem 8.1 shows that the final values of the states of the system

ΞΦ are fixed points of Φ.

Theorem 8.2. ([8], Theorem 50) We have ∀µ ∈ Bn, ∀µ′ ∈ Bn, ∀ρ ∈ Pn,

(Φ(µ′) = µ′ and ∃t′ ∈ R, Φρ(µ, t′) = µ′) =⇒ ∀t ≥ t′, Φρ(µ, t) = µ′.

Proof. For arbitrary µ ∈ Bn, µ′ ∈ Bn, ρ ∈ Pn we suppose that Φ(µ′) =

µ′ and Φρ(µ, t′) = µ′. We have ∀t ≥ t′,

Φρ(µ, t) Remark 5.1= Φρ·χ(t′,∞)(µ′, t)
Theorem 7.1, (3)=⇒(5)

= µ′.

Remark 4. As resulting from Theorem 8.2, the accessible fixed points are

final values of the states of the system ΞΦ.

The properties of the fixed points that are expressed by Theorems 7.1, 8.1,

8.2 give a better understanding of Example 5.1.

9. TRANSITIVITY

Definition 9.1. The system ΞΦ (or the function Φ) is transitive, or mini-

mal if one of the following non-equivalent properties holds true:

∀µ ∈ Bn, ∀µ′ ∈ Bn, ∃ρ ∈ Pn, ∃t ∈ R, Φρ(µ, t) = µ′, (12)

∀µ ∈ Bn, ∀µ′ ∈ Bn, ∀ρ ∈ Pn, ∃t ∈ R, Φρ(µ, t) = µ′. (13)

Remark 9.1. The property of transitivity may be considered one of surjectivity

or one of accessibility.

If Φ is transitive, then it has no fixed points. For example 1Bn is not

transitive since all µ ∈ Bn are fixed points for this function.

Example 9.1. The property (12) of transitivity is exemplified in Figure 5

and the property (13) of transitivity is exemplified in Figure 6.

10. THE EQUIVALENCE OF THE SYSTEMS

Notation 10.1. Let h : Bn → Bn and x : R → Bn be some functions. We

denote by h(x) : R → Bn the function

∀t ∈ R, h(x)(t) = h(x(t)).
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Fig. 5. Transitivity.

Fig. 6. Transitivity.

Remark 10.1. If h : Bn → Bn and x ∈ S(n) is expressed by

x(t) = x(−∞+ 0) · χ(−∞,t0)(t)⊕ x(t0) · χ[t0,t1)(t)⊕ ...⊕ x(tk) · χ[tk,tk+1)
(t)⊕ ...

then

h(x)(t) = h(x(−∞+ 0)) · χ(−∞,t0)(t)⊕ h(x(t0)) · χ[t0,t1)(t)⊕ ...

...⊕ h(x(tk)) · χ[tk,tk+1)
(t)⊕ ...

Notation 10.2. For h : Bn → Bn and α = α0, ..., αk, ... ∈ Bn, we denote by

ĥ(α) the sequence h(α0), ..., h(αk), ... ∈ Bn.

Notation 10.3. Let be k ≥ 2 arbitrary and we denote for µ1, ..., µk ∈ Bn,

µ1 ∪ ... ∪ µk = (µ1
1 ∪ ... ∪ µk

1, ..., µ
1
n ∪ ... ∪ µk

n).

Notation 10.4. We denote by Ωn the set of the functions h : Bn → Bn that

fulfill

i) h is bijective;

ii) h(0, ..., 0) = (0, ..., 0), h(1, ..., 1) = (1, ..., 1);
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iii) ∀k ≥ 2,∀µ1 ∈ Bn, ...,∀µk ∈ Bn,

µ1 ∪ ... ∪ µk = (1, ..., 1) ⇐⇒ h(µ1) ∪ ... ∪ h(µk) = (1, ..., 1).

Theorem 10.1. a) Ωn is group relative to the composition ′◦′ of the functions;

b) ∀h ∈ Ωn, ∀α ∈ Πn, ĥ(α) ∈ Πn;

c) ∀h ∈ Ωn, ∀ρ ∈ Pn, h(ρ) ∈ Pn.

Proof. a) We can prove the fact that 1Bn ∈ Ωn, ∀h ∈ Ωn, ∀h′ ∈ Ωn, h◦h′ ∈ Ωn

and ∀h ∈ Ωn, h−1 ∈ Ωn. For example let be h ∈ Ωn, k ≥ 2 and ν1, ..., νk ∈ Bn

arbitrary, for which we denote µ1 = h−1(ν1), ..., µk = h−1(νk). We have:

h−1(ν1 ∪ ... ∪ νk) = (1, ..., 1) ⇐⇒ ν1 ∪ ... ∪ νk = h(1, ..., 1) = (1, ..., 1)

⇐⇒ h(µ1) ∪ ... ∪ h(µk) = (1, ..., 1) ⇐⇒ µ1 ∪ ... ∪ µk = (1, ..., 1)

⇐⇒ h−1(ν1) ∪ ... ∪ h−1(νk) = (1, ..., 1),

thus h−1 fulfills iii) from Notation 10.4.

b) Let h ∈ Ωn and α = α0, ..., αk, ... ∈ Bn be arbitrary. We denote for p ≥ 1

{µ1, ..., µp} = {µ|µ ∈ Bn, {k|k ∈ N, αk = µ} is infinite}

and we remark that

α ∈ Πn ⇐⇒ µ1, ..., µp, µ1, ..., µp, µ1, ... ∈ Πn ⇐⇒

⇐⇒
{

µ1 = (1, ..., 1), p = 1

µ1 ∪ ... ∪ µp = (1, ..., 1), p ≥ 2
,

ĥ(α) ∈ Πn ⇐⇒ h(µ1), ..., h(µp), h(µ1), ..., h(µp), h(µ1), ... ∈ Πn ⇐⇒

⇐⇒
{

h(µ1) = (1, ..., 1), p = 1

h(µ1) ∪ ... ∪ h(µp) = (1, ..., 1), p ≥ 2
.

Case p = 1,

α ∈ Πn =⇒ µ1 = (1, ..., 1) =⇒ h(µ1) = (1, ..., 1) =⇒ ĥ(α) ∈ Πn.

Case p ≥ 2,

α ∈ Πn =⇒ µ1 ∪ ... ∪ µp = (1, ..., 1) =⇒ h(µ1) ∪ ... ∪ h(µp) = (1, ..., 1) =⇒
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=⇒ ĥ(α) ∈ Πn.

c) Let us take arbitrarily some h ∈ Ωn and a function ρ ∈ Pn,

ρ(t) = α0 · χ{t0}(t)⊕ ...⊕ αk · χ{tk}(t)⊕ ...

where α ∈ Πn and (tk) ∈ Seq. We have

h(ρ)(t) = h(ρ(t)) =

= h((0, ..., 0) · χ(−∞,t0)(t)⊕ α0 · χ{t0}(t)⊕ (0, ..., 0) · χ(t0,t1)(t)⊕ ...

...⊕ αk · χ{tk}(t)⊕ (0, ..., 0) · χ(tk,tk+1)
(t)⊕ ...)

= h(0, ..., 0) · χ(−∞,t0)(t)⊕ h(α0) · χ{t0}(t)⊕ h(0, ..., 0) · χ(t0,t1)(t)⊕ ...

...⊕ h(αk) · χ{tk}(t)⊕ h(0, ..., 0) · χ(tk,tk+1)
(t)⊕ ...

= h(α0) · χ{t0}(t)⊕ ...⊕ h(αk) · χ{tk}(t)⊕ ...

Because ĥ(α) ∈ Πn, taking into account b), we conclude that h(ρ) ∈ Pn.

Theorem 10.2. Let be the functions Φ, Ψ : Bn → Bn and the bijections

h : Bn → Bn, h′ ∈ Ωn. The following statements are equivalent:

a) ∀ν ∈ Bn, the diagram

Bn Φν→ Bn

h ↓ ↓ h

Bn Ψh′(ν)→ Bn

is commutative;

b) ∀µ ∈ Bn, ∀α ∈ Πn,∀k ∈ N ,

h(Φ̂α(µ, k)) = Ψ̂ĥ′(α)(h(µ), k);

c) ∀µ ∈ Bn, ∀ρ ∈ Pn, ∀t ∈ R,

h(Φρ(µ, t)) = Ψh′(ρ)(h(µ), t). (14)

Proof. a)=⇒b) It is sufficient to prove that ∀µ ∈ Bn,∀α ∈ Πn, ∀k ∈ N,

h(Φα0...αk
(µ)) = Ψh′(α0)...h′(αk)(h(µ)) (15)

since this is equivalent with b).
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We fix arbitrarily some µ and some α and we use the induction on k. For

k = 0 the statement is proved, thus we suppose that it is true for k and we

prove it for k + 1:

h(Φα0...αkαk+1
(µ)) = h(Φαk+1

(Φα0...αk
(µ))) = Ψh′(αk+1)(h(Φα0...αk

(µ))) =

= Ψh′(αk+1)(Ψh′(α0)...h′(αk)(h(µ))) = Ψh′(α0)...h′(αk)h′(αk+1)(h(µ)).

b)=⇒c) For arbitrary µ ∈ Bn and ρ ∈ Pn,

ρ(t) = ρ(t0) · χ{t0}(t)⊕ ...⊕ ρ(tk) · χ{tk}(t)⊕ ...

with (tk) ∈ Seq, ρ(t0), ..., ρ(tk), ... ∈ Πn, we have that

h′(ρ)(t) = h′(ρ(t)) = h′(ρ(t0)) · χ{t0}(t)⊕ ...⊕ h′(ρ(tk)) · χ{tk}(t)⊕ ... (16)

is an element of Pn (see Theorem 10.1 c)) and

h(Φρ(µ, t)) = h(µ · χ(−∞,t0)(t)⊕ Φρ(t0)(µ) · χ[t0,t1)(t)⊕ ...

...⊕ Φρ(t0)...ρ(tk)(µ) · χ[tk,tk+1)
(t)⊕ ...) =

= h(µ) · χ(−∞,t0)(t)⊕ h(Φρ(t0)(µ)) · χ[t0,t1)(t)⊕ ...

...⊕ h(Φρ(t0)...ρ(tk)(µ)) · χ[tk,tk+1)
(t)⊕ ... =

(15)
= h(µ) · χ(−∞,t0)(t)⊕Ψh′(ρ(t0))(h(µ)) · χ[t0,t1)(t)⊕ ...

...⊕Ψh′(ρ(t0))...h′(ρ(tk))(h(µ)) · χ[tk,tk+1)
(t)⊕ ...

(16)
= Ψh′(ρ)(h(µ), t).

c)=⇒a) Let ν, µ ∈ Bn be arbitrary and fixed and we consider ρ ∈ Pn,

ρ(t) = ν · χ{t0}(t)⊕ ρ(t1) · χ{t1}(t)⊕ ...⊕ ρ(tk) · χ{tk}(t)⊕ ...

with (tk) ∈ Seq fixed too. We have

h(Φρ(µ, t)) = h(µ ·χ(−∞,t0)(t)⊕Φν(µ) ·χ[t0,t1)(t)⊕Φνρ(t1)(µ) ·χ[t1,t2)(t)⊕ ...) =

= h(µ) · χ(−∞,t0)(t)⊕ h(Φν(µ)) · χ[t0,t1)(t)⊕ h(Φνρ(t1)(µ)) · χ[t1,t2)(t)⊕ ...

But

h′(ρ)(t) = h′(ρ(t)) = h′(ν) · χ{t0}(t)⊕ h′(ρ(t1)) · χ{t1}(t)⊕ ...,
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Ψh′(ρ)(h(µ), t) =

= h(µ) · χ(−∞,t0)(t)⊕Ψh′(ν) · χ[t0,t1)(t)⊕Ψh′(ν)h′(ρ(t1)) · χ[t1,t2)(t)⊕ ...

and from (14), for t ∈ [t0, t1), we obtain

h(Φν(µ)) = Ψh′(ν)(h(µ)).

Definition 10.1. We consider the functions Φ,Ψ : Bn → Bn. If two bijec-

tions h : Bn → Bn, h′ ∈ Ωn exist such that one of the equivalent properties a),

b), c) from Theorem 10.2 is satisfied, then ΞΦ,ΞΨ are called equivalent and

Φ, Ψ are called conjugated. In this case we denote Φ
(h,h′)→ Ψ.

Remark 10.2. The equivalence of the universal regular autonomous asyn-

chronous systems is indeed an equivalence and it should be understood as a

change of coordinates. Thus Φ and Ψ are indistinguishable.

Example 10.1. Φ, Ψ : B2 → B2 are given by, see Figure 7

Fig. 7. Equivalent systems.

∀(µ1, µ2) ∈ B2,Φ(µ1, µ2) = (µ1 ⊕ µ2, µ2),

∀(µ1, µ2) ∈ B2, Ψ(µ1, µ2) = (µ1, µ1 · µ2 ∪ µ1 · µ2)

and the bijection h : B2 → B2 is

∀(µ1, µ2) ∈ B2, h(µ1, µ2) = (µ2, µ1).
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The diagram
B2 Φν→ B2

h ↓ ↓ h

B2 Ψν′→ B2

commutes for ν = ν ′ = (0, 0) and on the other hand for ν = ν ′ = (1, 1) we

have the assignments

(0, 0) Φ→ (0, 1)

h ↓ ↓ h

(1, 1) Ψ→ (0, 1)

,

(0, 1) Φ→ (1, 0)

h ↓ ↓ h

(0, 1) Ψ→ (1, 0)

,

(1, 0) Φ→ (1, 1)

h ↓ ↓ h

(1, 0) Ψ→ (0, 0)

,

(1, 1) Φ→ (0, 0)

h ↓ ↓ h

(0, 0) Ψ→ (1, 1)

.

We denote πi : B2 → B, ∀(µ1, µ2) ∈ B2,

πi(µ1, µ2) = µi, i = 1, 2.

For ν = (0, 1), ν ′ = (1, 0) we have

(0, 0)
(π1,Φ2)→ (0, 1)

h ↓ ↓ h

(1, 1)
(Ψ1,π2)→ (0, 1)

,

(0, 1)
(π1,Φ2)→ (0, 0)

h ↓ ↓ h

(0, 1)
(Ψ1,π2)→ (1, 1)

,

(1, 0)
(π1,Φ2)→ (1, 1)

h ↓ ↓ h

(1, 0)
(Ψ1,π2)→ (0, 0)

,

(1, 1)
(π1,Φ2)→ (1, 0)

h ↓ ↓ h

(0, 0)
(Ψ1,π2)→ (1, 0)

,

and for ν = (1, 0), ν′ = (0, 1) the assignments are

(0, 0)
(Φ1,π2)→ (0, 0)

h ↓ ↓ h

(1, 1)
(π1,Ψ2)→ (1, 1)

,

(0, 1)
(Φ1,π2)→ (1, 1)

h ↓ ↓ h

(0, 1)
(π1,Ψ2)→ (0, 0)

,

(1, 0)
(Φ1,π2)→ (1, 0)

h ↓ ↓ h

(1, 0)
(π1,Ψ2)→ (1, 0)

,

(1, 1)
(Φ1,π2)→ (0, 1)

h ↓ ↓ h

(0, 0)
(π1,Ψ2)→ (0, 1)

,

respectively. Φ and Ψ are conjugated.
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Example 10.2. The functions h, h′ : B2 → B2 are given in the following

table
(µ1, µ2) h(µ1, µ2) h′(µ1, µ2)

(0, 0) (0, 1) (0, 0)

(0, 1) (1, 1) (1, 0)

(1, 0) (0, 0) (0, 1)

(1, 1) (1, 0) (1, 1)

and the state portraits of the two systems are given in Figure 8. ΞΦ and ΞΨ

are equivalent.

Fig. 8. Equivalent systems.

Theorem 10.3. If Φ and Ψ are conjugated, then the following possibilities

exist:

a) Φ = Ψ = 1Bn ;

b) Φ 6= 1Bn and Ψ 6= 1Bn .

Proof. We presume that Φ
(h,h′)→ Ψ. In the equation

∀ν ∈ Bn, ∀µ ∈ Bn, h(Φν(µ)) = Ψh′(ν)(h(µ))

we put Ψ = 1Bn and we have

∀ν ∈ Bn,∀µ ∈ Bn, h(Φν(µ)) = h(µ)

thus ∀ν ∈ Bn, Φν = 1Bn and finally Φ = 1Bn .

Theorem 10.4. We suppose that ΞΦ and ΞΨ are equivalent and let be h, h′

such that Φ
(h,h′)→ Ψ.

a) If µ is a fixed point of Φ, then h(µ) is a fixed point of Ψ.
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b) For any µ ∈ Bn and any ρ ∈ Pn, if Φρ(µ, t) is periodical with the period

T0, then Ψh′(ρ)(h(µ), t) is periodical with the period T0.

c) If ΞΦ is transitive, then ΞΨ is transitive.

Proof. a) We suppose that Φ(µ) = µ. The commutativity of the diagram

Bn Φν→ Bn

h ↓ ↓ h

Bn Ψh′(ν)→ Bn

for ν = (1, ..., 1) gives

h(µ) = h(Φ(µ)) = h(Φ(1,...,1)(µ)) = Ψh′(1,...,1)(h(µ)) =

= Ψ(1,...,1)(h(µ)) = Ψ(h(µ)).

b) Let be µ ∈ Bn and ρ ∈ Pn. The hypothesis states that ∃t′ ∈ R,∀t ≥ t′,

Φρ(µ, t) = Φρ(µ, t + T0)

and in this situation

Ψh′(ρ)(h(µ), t) = h(Φρ(µ, t)) = h(Φρ(µ, t + T0)) = Ψh′(ρ)(h(µ), t + T0).

c) Let µ, µ′ ∈ Bn be arbitrary and fixed. The hypothesis (12) states that

∃ρ ∈ Pn, ∃t ∈ R, Φρ(h−1(µ), t) = h−1(µ′),

wherefrom

Ψh′(ρ)(µ, t) = Ψh′(ρ)(h(h−1(µ)), t) = h(Φρ(h−1(µ), t) = h(h−1(µ′)) = µ′.

The situation with (13) is similar.

11. DYNAMICAL BIFURCATIONS

Definition 11.1. We consider the case when the generator function Φ :

Bn × Bm → Bn, Bn × Bm 3 (µ, λ) → Φ(µ, λ) ∈ Bn of ΞΦ(·,λ) depends

on the parameter λ ∈ Bm. We fix λ and let be λ′ ∈ Bm. If Φ(·, λ) and

Φ(·, λ′) are conjugated, then Φ(·, λ′) is called an admissible (or allowable)

perturbation of Φ(·, λ).
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Remark 11.1. Intuitively speaking (Ott, [2]) a dynamical bifurcation is a

qualitative change in the dynamic of the system ΞΦ(·,λ) that occurs at the vari-

ation of the parameter λ.

Definition 11.2. If for any parameters λ, λ′ ∈ Bm the systems ΞΦ(·,λ) and

ΞΦ(·,λ′) are equivalent, then Φ is called structurally stable; the existence of

λ, λ′ such that ΞΦ(·,λ) and ΞΦ(·,λ′) are not equivalent is called a dynamical

bifurcation.

Equivalently, let us fix an arbitrary λ ∈ Bm. If ∀λ′ ∈ Bm, Φ(·, λ′) is an

admissible perturbation of Φ(·, λ), then Φ is said to be structurally stable,

otherwise we say that Φ has a dynamical bifurcation.

Remark 11.2. If ∀λ ∈ Bm, ∀λ′ ∈ Bm the bijections h : Bn → Bn, h′ ∈ Ωn

exist such that ∀ν ∈ Bn, the diagram

Bn Φν(·,λ)→ Bn

h ↓ ↓ h

Bn Φh′(ν)(·,λ′)→ Bn

commutes, then Φ is structurally stable, otherwise we have a dynamical bifur-

cation.

Example 11.1. In Figure 9 (n = 2,m = 1),

Fig. 9. Structural stability.

Φ is structurally stable and the bijections h, h′ are defined accordingly to the

following table:
(µ1, µ2) h(µ1, µ2) h′(µ1, µ2)

(0, 0) (0, 1) (0, 0)

(0, 1) (1, 1) (1, 0)

(1, 0) (0, 0) (0, 1)

(1, 1) (1, 0) (1, 1)
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Example 11.2. In Figure 10 (n = 2,m = 1),

Fig. 10. Dynamical bifurcation.

Φ has a dynamical bifurcation.

Definition 11.3. The bifurcation diagram is a partition of the set of sys-

tems {ΞΦ(·,λ)|λ ∈ Bm} in classes of equivalence given by the equivalence of the

systems, together with representative state portraits for each class of equiva-

lence.

Example 11.3. Figure 10 is a bifurcation diagram.

Definition 11.4. The bifurcation diagram ([2], page 5) is the graph that

gives the position of the fixed points depending on a parameter, such that a

bifurcation exists.

Remark 11.3. Such a(n informal) definition works for calling Figure 10 a

bifurcation diagram, since there fixed points exist. However for Figure 11

Fig. 11. Dynamical bifurcation.

this definition does not work, because a bifurcation exists there, but no fixed

points.

Definition 11.5. Let be Φ, Ψ : Bn × Bm → Bn. The families of systems

(ΞΦ(·,λ))λ∈Bm and (ΞΨ(·,λ))λ∈Bm are called equivalent if there exists a bijec-

tion h′′ : Bm → Bm such that ∀λ ∈ Bm,ΞΦ(·,λ) and ΞΨ(·,h′′(λ)) are equivalent

in the sense of Definition 10.1.



154 Şerban E. Vlad

References

[1] C.-D. Constantinescu, Chaos, fractals and applications, Flower Power, Piteşti, 2003.(in
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