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Abstract. The (non-initialized, non-deterministic) asynchronous systems
(in the input-output sense) are multi-valued functions from m-dimensional sig-
nals to sets of n-dimensional signals, the concept being inspired by the modeling
of the asynchronous circuits. Our purpose is to state the problem of the their
stability.
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1 Introduction

B = {0, 1} is the binary Boole algebra. The function z : R — B™ has a limit
when ¢t — oo if
Htf,Vt > tf,m(t) = I(tf) (11)

The usual notation is z(t;) = tlim z(t). z is called (n-dimensional) signal if

it is of the form

z(t) = z(to — 0) * P(_oo,t0)(t) ® T(t0) * Plig0)(t) © (1) - Pty 1) () © .. (1.2)

where t € R. In (1.2) ¢ y : R — B is the characteristic function and
to < t; <ty < ... is some unbounded sequence. We note

S™ = {z|z : R — B", z is signal}

P*(S™) = {X|X c S™, X # 0}
St = {z|z € ®, Ilimz(t)}



For the Boolean function F' : B™ — B™ we note also
Se) = {ulu € S™, 3lim F(u(t))}

Any signal z has an initial time instant ¢y, from the definition (1.2). It is not
unique and it is precised by the condition V¢ < ¢y, z(t) = z(t9—0), where (the
unique) z(to — 0) is the initial value of z. In particular the constant function
x satisfies the property that any ¢, is an initial time instant and x coincides
with its initial value. There exist signals without final time instant ¢; and
respectively without final value limz(t). If ¢ty exists, it is not unique and

t—o0

any t'f > t7 is a final time instant too. In particular, the constant function x
satisfies the property that any ¢ is a final time instant and z coincides with
its final value.

When z is the state of a system, the problem of the existence of ¢, thus
of the limit tll)Ig) z(t) is the stability problem of that system.

2 Asynchronous systems

Definition We call (non-initialized, non-deterministic) asynchronous sys-
tem (in the input-output sense) a function f : U — P*(S™), where U €
P*(S™). The elements u € U, respectively x € f(u) are called (admissible)
inputs, respectively (possible) states, or outputs.

Remark The concept of asynchronous system has its origin in the model-
ing of the asynchronous circuits, where the multivalued association between
the cause u and the effects x € f(u) is motivated by the changes in power
supply, temperature, by the technologycal dispersion, by the errors of the
measurement instruments etc.

Definition The system g : V — P*(S™), V € P*(S(™) is called a
subsystem of f if

VcU and YueV,g(u) C f(u)

Defnition The system f* : U* — P*(S™), U* € P*(S(™) is called the
dual system of f if U* = {u|u € U} and Yu € U, f*(u) = {Z|z € f(u)}. We
have noted with u,ZT the coordinatewise complements of these signals, for
example u(t) = (u1(t), ..., um(t)).

Definition We suppose that UNV # () and that Vu € UNV, f(u)Ng(u) #
(. The system fNg:UNV — P*(S™) is defined by

Vue UNV,(fNg)(u) = f(u) Ng(u)



Definition The system fUg: U UV — P*(S™) is defined in the next
manner

fu),if welU-V
Yu e UUV,(fUg)(u) = gu),if weV -U
fwyug(u),if vwelnNV

Definition Let the system f/ : U’ — P*(S™)), U’ € P*(S™). IfUNU’ #
(), the parallel connection of f and f’ is the system (f,f') : UNU' —
P*(S™+)) defined by
Vue UNU', (f, f)(u) = {z|z € S®+),

. n . _ ) m, if ie€{l,.,n}z€ f(u)
V’LE{l,...,n—Fn},Zz—{ Yien,if ie{n+1,...,n+n'},y€f'(u) }

Definition The system h : X — P*(S®), X € P*(S™) is given, so
that Vu € U, f(u) N X # 0. The serial connection of h and f is the system
ho f:U — P*(S®) that is defined by

Vu e U, (ho f)(u) ={y|Fz € f(u) N X,y € h(z)}
Definition The system f is called non-anticipatory, or causal if
Vi, € R,Vu € U, Vv € U, U|(—coty) = V|(—00,ts) =

= {F)(—oot) T € f(W)} = {Yi(—o0tn) |y € f(v)}
Definition The system f is initialized if

Ju® € B",Vu € U,Vz € f(u), 3ty € R, Vt < ty, z(t) = w°

If so, the unique vector w® satisfying the previous property is called the initial
state of f.

3 Steady values of the states
Definition Let the system f: U — P*(S™), U c S™. If
JueU,3z € f(u),Iw e B*, 3ty € RVt > ty,z(t) =w

then the binary vector w is called the steady value, or the final value, or the
limit when ¢t — oo of the state z € f(u). In the special case when

JueU,3z € f(u),FJw € B",Vt € R,z(t) = w
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is true, w is called a point of equilibrium of f.

Remark For any v and any z € f(u), if w = tlim x(t) exists, then it is
unique. =~

Notation For u € U, we note

Yr(u) ={w|3z € f(u),w = limz(t)}

t—oo

4 Initial time and final time

Definition We say that the system f has an initial time (instant) ¢, which
is

a) unbounded if

VYu € UVz € f(u),3to € R, Vt < ty, z(t) = z(to — 0)
b) bounded if
Yu € U,3ty € R,Vz € f(u),Vt < tg, z(t) = z(to — 0)
c¢) fix (or universal) if
dty € R,Vu € U,Vz € f(u),Vt < to, z(t) = z(to — 0)
We say that the system f has a final time (instant) ¢; which is
a’) unbounded if
Yu € U,V € f(u) NS™, 3t; € RVt > ty, z(t) = 2(ty)
b’) bounded if
Yu € U,3t; € R,V € f(u) N S™ Vit > t;, x(t) = z(ts)
¢’) fix (or universal) if
Jt; € R,Yu € U,Vz € f(u) N S™,Vt > tg,z(t) = z(ty)

Remarks There are 3 x 3 = 9 possibilities of combining the initial time
and the final time for a system.
The next implications are true:

to fizr =ty bounded =ty unbounded
and the next implications are true also:

ty fix=1t; bounded = t; wunbounded
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5 Absolute stability

Definition a) A system f that satisfies
Vu € UVz € f(u),Iw € B", 3ty € RVt > tf,2(t) = w

where w and ¢; depend on z only (thus Jw, 3¢, commute) is called absolutely
stable.
b) If

Vu e U,Jw € B",Vz € f(u),3t; € RVt > ts,2(t) =w

then f is called absolutely race-free stable, or absolutely delay-insensitive.
c) We say that f is absolutely constantly stable if it satisfies

Jw € B",Vu € U,Vz € f(u),3t; € R,Vt > ts,z(t) = w
Remarks The next implications are true:
f abs const stable = f abs race—free stable = f abs stable

On the other hand if f is absolutely stable, then it defines the system lim f :
U — P*(S™) by Vu € U,lim f(u) = X;(u) and we have identified the
binary vector with the constant vector function. In case of absolute race-
free stability, this system is deterministic, i.e. Yu € U, the set lim f(u) has
exactly one element. If the absolute constant stability of f is true also, then
lim f is the constant univalued function.

Sometimes it will be useful to write the absolute stability condition under
the form

Vu € UVz € f(u),Iw € B", 3ty € R,Vt > t7,2(t —0) =w

and similarly for the other two cases, showing the fact that x has reached its
final value w sometime before t;.

Theorem We suppose that f : U — P*(S™), U c S(™ is an absolutely
stable (an absolutely race-free stable, an absolutely constantly stable) system
and let the systems g : V — P*(S™), V c S™, f .U — P*S"),
U’ C S™). The next statements are true:

a) If g C f, then g is absolutely stable (absolutely race-free stable, abso-
lutely constantly stable)

b) f* is absolutely stable (absolutely race-free stable, absolutely con-
stantly stable)

) UNV #Pand Vu e UNV, f(u) Ng(u) # 0, then fNg is absolutely
stable (absolutely race-free stable, absolutely constantly stable)
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d) If g is absolutely stable (absolutely race-free stable, absolutely con-
stantly stable), then f U g is absolutely stable (absolutely race-free stable,
absolutely constantly stable)

e) If f’ is absolutely stable (absolutely race-free stable, absolutely con-
stantly stable) and if UNU’ # (, then (f, f’) is absolutely stable (absolutely
race-free stable, absolutely constantly stable)

Theorem Let the systems f and h : X — P*(S®), X c S™. We
suppose that Yu € U, f(u) N X # 0; then if h is absolutely stable (abso-
lutely constantly stable), we have that h o f is absolutely stable (absolutely
constantly stable).

Remark The statement of the previous theorem is false in the case of
absolute race-free stability, in general.

Theorem The next properties are equivalent for the system f:

a) absolute stability with unbounded final time:

Vu € U,Vz € f(u),3w € B", 3ty € R,Vt > t7,2(t) = w
Vu e UVz € f(u)nS™,3t, € RVt > ty, 2(t) = a(ty)

< VYueUVz e f(u),3w e B", 3ty € RVt > ts,z(t) =w

where w and ¢; depend on z only (thus Jw, 3t; commute)
b) absolute stability with bounded final time:

Vu € UVz € f(u),Jw € B", 3ty € RVt > tr,2(t) =w
Vu € U,3t; € R,Vz € f(u) NSVt > ty, z(t) = z(ty)

<= VYueU ;e R, Vz € f(u),Iw € B",Vt > ts,z(t) =w
c) absolute stability with fix final time:

Vu € UVz € f(u),Jw € B", 3ty € RVt > tr,2(t) =w
3t; € R,Vu € U,Vz € f(u) NSVt > t;, z(t) = z(ty)

< dtyec R, VuecUVz e f(u),Iw € B",Vt > ts,z(t) =w
d) absolute race-free stability with unbounded final time:

Vu € U,Jw € B",Vz € f(u),It; € RVt > tr,2(t) =w
Vu e UVzr € f(u)NS™,3t; € RVt > ty, z(t) = z(ty)

<= VYueU JweB",Vz € f(u),It; € RVt > tp,z(t) =w
e) absolute race-free stability with bounded final time:

Vu € U,Jw € B",Vz € f(u),It; € RVt > tr,2(t) =w

Vu € U,3t; € R,Vz € f(u) NSVt > ty, z(t) = z(ty)

6



< JweB" ;e R, VuecUVzx e f(u),Vt > trz(t) =w

where w and ¢; are constant (thus Jw, 3t; commute)

Theorem Let the system f having the property that it is non-anticipatory
and with fix final time.

a) If f is absolutely stable, then the set ¥ ¢(u) depends on the restriction

Uj(—o0,t/] only.
b) In the case that f is absolutely delay-insensitive, the limit lim ()

t—o0
that is the same for all z € f(u) depends on () only.
c) If f is absolutely constantly stable, tlim x(t) is the same for all x € f(u)

and all u € U.






const abs stab —  abs race-free stab — abs stab

I U

F-rel const stab = F-rel flgce-free stab — F-rel stab

1) U Y’

rel const stab  —  rel race-free stab —  rel stab

Figure 1:

ItU OSE;’Z) = () the previous stability properties are trivial and if U OS}?Z) #0
they are non-trivial.

Remarks The stability of a system relative to a Boolean function is
similar with the other notions of stability. We observe that the notions of
F—relative constant stability and respectively of absolutely constant stabil-
ity coincide, being at the same time a special case of F'—relative race-free
stability.

We give in Figure 1 the existing connection between the nine types of
stability that were previously defined.

8 Synchronous-like, monotonous and hazard-
free transitions. The fundamental mode

Definition For z € S™ and the time instances ¢’ < 7, the couple (z(t'), ("))
is called transition; we say that = has a transition in the interval [¢/,¢”] from
the value z(t') to the value z(t”).

Definition By the transition (z(t' — 0),z(¢t” —0)) it is understood any of
the transitions (z(t' — €),z(t” — €)), where € > 0 is taken sufficiently small
so that

VE € (0,e],z(t' — &) = z(t' —0)

VE € (0,¢],z(t” — &) = z(t” —0)

The interval on which this transition takes place is by definition any of the
intervals [t' — &,t” — &] with & € (0,¢€].

Notations The usual notations for the transitions (z(t'), z(¢”)) and (z(¢'—
0),z(t” — 0)) are z(t') — z(¢”) and respectively z(t' — 0) — z(t” — 0). The
interval on which z(#' — 0) — z(¢” — 0) takes place is noted [t' — 0,t” — 0].

Definition The next data is given: the system f, the input v € U,
the state x € f(u) and the instants ' < ¢”. In this case the transition



z(t') — z(t”) is also called transfer of z under the input u in the interval
[t',t"] from the value z(t') to the value x(¢”) and we say that f transfers z
under the input v (it u—transfers z) in the interval [t/,¢”] from z(¢') to z(¢”).

Similarly for the transition z(¢' — 0) — z(t” — 0).

Definition a) We suppose that w,w’ € B",ty,t; € R and u € U exist so
that

a.i) Vz € f(u),Vt < to,z(t) =w

a.ii) Vz € f(u),Vt > tp,z(t — 0) = v’

a.iil) £y < t/

Then z(ty — 0) — z(t; — 0) is a synchronous-like transition (or transfer);
we say that f transfers synchronous-likely (any) x under the input u in the
interval [to — 0,¢; — 0] from the value w to the value w'.

b) We suppose that w,w’ € B",tf,t; € R and u,v € U exist so that

b.i) Vz € f(u),Vt > ty,z(t —0) =w

b.ii) Vy € f(v),Vt > t/},y(t — 0) =o'

b.iil) t; < ¢

b.iv) Uj(—coty) = Vi(=coty)

b:v) {2 amtpl € F(0)} = {Hi(-ooily € F(0)}

If they are true, then y(t; —0) — y(t; —0) is a synchronous-like transition
(or transfer). We also say that the system f transfers synchronous-likely
(any) y under the input v = u-p(_y 4,y BV P}, o) in the interval [t;—0, 1} —0]
from the value w to the value w'.

c) All the synchronous-like transitions are these from a) and b).

Remarks The attribute ’synchronous-like’ given to a transition y(t; —
0) — y(t; — 0) implies the fact that y(t; — 0) = =z(t; — 0) is a steady
value of z € f(u) and y(t; — 0) is a steady value y € f(v). The initial
value is the same for all z € f(u) and all y € f(v) and it is treated as a
steady value. Things happen as if the unique state y switches with all the
coordinates simultaneously (synchronously), in discrete time, in the manner
y(k) = w,y(k +1) = «',... On the other hand, the ’composition’ of the
synchronous-like transitions is a synchronous-like transition: if t; <t} < t}
and if y(t; — 0) — y(t; —0), y(t; — 0) — y(t; — 0) are synchronous-like
transitions, then y(t; — 0) — y(t; — 0) is synchronous-like too.

Definition Let the system f and the input u having the property of
existence of an unbounded sequence ty < t; < ty < ... so that z(t, —0) —
Z(tx+1 — 0) be synchronous-like for all £ € N and all z € f(u). We say that
f is, under the input u, in the fundamental (operating) mode.

Definition The non-empty set U C S(™ is called o—closed if for any
sequence u* € U,k € N of inputs and any unbounded sequence t, < t; <
ty < ... of real numbers we have u®-_q, ;0\ @u' -y 1y DU @y, 1) D ... € U.
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Theorem We suppose that U is c—closed and that f satisfies
a) it is non-anticipatory
b) it satisfies the next property of initialization with bounded initial time:

Vu € U,Fuw’ € B™, 3t, € R,V € f(u),Vt < to, 2(t) = w°

where w® and t, depend on u only (thus Jw?, Ity commute)
c) it is absolutely race-free stable with bounded final time, i.e.

Vu e U,3w € B",3t; € R,Vz € f(u),Vt > ty,z(t —0) =w

where w and ¢; depend on u only (thus Jw, 3t; commute)

Then for any sequence u* € U, k € N of inputs, the unbounded sequence
to < t; < t3 < ... of real numbers exists so that the transitions z(t; — 0) —
z(txr1 —0), k € N, z € f(u) are synchronous-like, where u € U is given by

u = UO . 80(—00,t1) @ UZ ° (p[tl,tg) @ U3 ) So[t2,t3) @ ot

Remark The previous theorem has two variants when ’f is absolutely
race-free stable’ is replaced by ’f is relatively race-free stable’, respectively
by ’f is F'—relatively race-free stable’.

Theorem Let the system f : U — P*(S™), with U o—closed and we
make the next suppositions:

a) f is non-anticipatory

b) it is initialized with fix initial time, i.e.

Ju® € B™, 3ty € R,Vu € U,Vz € f(u),Vt < to, z(t) = w°

where w® and t, are constant (thus Jw°, 3¢, commute)
c) the next controllability properties hold:

Vw e B", 3ty € R,3u € U,Vz € f(u),Vt > ty,z(t —0) =w (8.1)
JweB" ;e R,FueclUVz e f(u),Vt>trz(t—-0)=w=  (8.2)
= Vw' € B",3t; € R, I € U,Vz € f(U- PLoos;) DV P 00))s
Ve >t z(t—0)=w

Then for any sequence w* € B",k > 1 of binary vectors, an unbounded
sequence ty < t; < ty < ... of real numbers and a sequence of inputs u* €
U,k € N exist so that the input u € U defined by

u=u’- P(—o0,t1) P u? - Pltat0) D u’- Pleats) D ---
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satisfies the property
z(ty — 0) = w”

z(ty — 0) — z(tgy1 — 0) are synchronous — like

for all k € N and all z € f(u).

Definition The transition z(¢') — z(¢”) is called monotonous, if all
the coordinate functions x;,4 = 1,n restricted to the interval [t/,¢”] are
monotonous, i.e. they have on [/, "] at most one discontinuity point. The
transition z(t' — 0) — z(¢” — 0) is monotonous if all the coordinate functions
x;,t = 1,n restricted to all the intervals [t' — €,t” — €] with € > 0 chosen
sufficiently small are monotonous.

Definition If for u € U and t; < t} the transfer z(t; —0) — z(t}; — 0) is
synchronous-like and monotonous, z € f(u) then it is called hazard-free.

9 Conclusions

The asynchronous systems are a mathematical concept that is inspired by the
modeling of the asynchronous circuits and the purpose of this paper is that
of stating the stability problem for them. We can furthermore connect with
this topic the notions of controllability and accessibility (by analogy we can
adopt from [1] about eight definitions of controllability and four definitions
of accessibility, but there exist also different points of view in the literature)
we can change / replace the non-anticipation condition with other similar or
dual conditions, we can suppose that f is generated by a generator function
® : B” x B™ — B"”, that it satisfies supplementary inertial properties etc.
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